激子
系统间交叉
有机发光二极管
材料科学
量子效率
单重态
光电子学
电致发光
荧光
激发态
纳秒
单重态裂变
原子物理学
光学
激光器
纳米技术
物理
凝聚态物理
图层(电子)
作者
Xianhao Lv,Lei Xu,Yuan Yu,Wei Cui,Huayi Zhou,Miao Cang,Qikun Sun,Yuyu Pan,Shanfeng Xue,Wenjun Yang
标识
DOI:10.1016/j.cej.2020.127333
摘要
“Hot-exciton” fluorescent materials can efficiently convert triplet excitons into singlet excitons through a path from high-lying triplet excited states (Tn, n > 1) to singlet excited states (Sm, m ≥ 1). The fast reverse intersystem crossing (RISC) process of the hot-exciton channel promotes a high exciton utilization efficiency (EUE) and reduces the efficiency roll-off (ηroll-off) caused by the accumulation of low-lying triplet excitons (T1). Herein, a pure-blue-emitting molecule, PICNAnCz, exhibiting hot-exciton fluorescent emission is proposed. The optimized PICNAnCz-based nondoped organic light-emitting diode (OLED) device achieves a high external quantum efficiency of 9.05% corresponding to a large EUE of 87% and a low ηroll-off of 13%, achieving both high efficiency and a small ηroll-off. The maximum current efficiency and power efficiency of the nondoped device are 9.07 cd A−1 and 5.76 lm W−1, respectively. The nondoped device shows a novel blue electroluminescence (EL) emission with a peak wavelength of 448 nm and Commission Internationale de l’Eclairage coordinates of (0.16, 0.11). These results are among the best reported for hot-exciton blue-emitting materials for nondoped blue fluorescent OLEDs. The excellent EL performance is attributed to the nanosecond-scale RISC process from the high-lying triplet excited state (T2) to the lowest singlet excited state (S1).
科研通智能强力驱动
Strongly Powered by AbleSci AI