Selecting Mutual Funds from the Stocks They Hold: A Machine Learning Approach

业务 财务 计算机科学 人工智能
作者
Bin Li,Alberto G. Rossi
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:46
标识
DOI:10.2139/ssrn.3737667
摘要

We select mutual funds in real time by combining individual fund holdings and a large number (94) of stock characteristics to compute fund-level characteristics on the basis of the stocks they hold. We show that, first, the majority of funds are largely exposed---both positively and negatively---to approximately 40-50 characteristics. Second, fund performance is non-linearly related to fund characteristics and there are significant degrees of interaction between different fund characteristics and fund performance. Third, when we predict fund performance, these non-linearities and interactions prove important as machine learning methods such as Boosted Regression Trees (BRT) outperform significantly standard linear frameworks and the BRT-generated forecasts encompass the ones generated by the predictors of mutual fund performance that have been proposed in the literature so far. Fourth, while in our setting BRT outperform the LASSO, elastic nets, random forests, and neural networks with 1 through 5 hidden layers, these other machine learning methods deliver good performance and they all outperform ordinary least squares models. Finally, while we detect signicant predictability using machine learning methods, the fund characteristics that matter the most in predicting fund returns and the functional relationbetween fund characteristics and fund performance are time-varying.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋天落叶林完成签到,获得积分10
1秒前
1秒前
2秒前
感动丸子发布了新的文献求助10
5秒前
李健应助快让我滚蛋毕业采纳,获得10
5秒前
禾禾发布了新的文献求助10
5秒前
Owen应助cheng采纳,获得10
7秒前
FashionBoy应助shinn采纳,获得10
7秒前
李钧鹏发布了新的文献求助10
9秒前
李小宁完成签到,获得积分10
9秒前
大方太清完成签到 ,获得积分10
9秒前
ms完成签到,获得积分10
12秒前
搜集达人应助娇气的雁兰采纳,获得10
13秒前
13秒前
快让我滚蛋毕业完成签到,获得积分10
14秒前
14秒前
CharlotteBlue应助科研通管家采纳,获得150
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
16秒前
猪猪hero应助李钧鹏采纳,获得10
19秒前
19秒前
shinn发布了新的文献求助10
20秒前
如意2023发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
万能图书馆应助体贴汽车采纳,获得10
23秒前
123完成签到,获得积分10
24秒前
25秒前
许许驳回了思源应助
25秒前
ENIX完成签到 ,获得积分10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488