Managing Opportunistic Consumer Returns in Retail Operations

报童模式 收入 利润(经济学) 产品(数学) 业务 产量(工程) 分析 微观经济学 营销 产业组织 经济 计算机科学 财务 供应链 数据科学 材料科学 冶金 数学 几何学
作者
Mehmet Sekip Altug,Tolga Aydinliyim,Aditya Jain
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (9): 5660-5678 被引量:40
标识
DOI:10.1287/mnsc.2020.3777
摘要

Retailers use lenient return policies to stimulate demand and increase revenues, as such policies help customers assess uncertain product valuations at low (or no) return cost and yield higher equilibrium prices. However, generous refunds also yield unintended consequences such as opportunistic returns, which take place when customers intentionally rent a product for short-term use. Accounting for 11% of all product returns in the United States in 2017, opportunistic returns prompt retailers to seek tactics to address adverse revenue and cost implications. We consider two alternative proposals using a price- and refund-setting newsvendor framework with two customer types: honest returners and renters. The first proposal, targeted-refunds, uses retail analytics firms to distinguish renters from honest returners and implements return policies tailored for each segment. The second proposal, menu-of-refunds, presents customers multiple price-refund pairs and lets them self-select. We compare and contrast the optimal decisions and the profit implications of both proposals with respect to two benchmark settings: one without any renters and another proposal, uniform-refunds, wherein the retailer merely reoptimizes its decisions while acknowledging that renters exist. We characterize the conditions under which the menu-of-refunds proposal separates customer types and thus matching or exceeding the performance of the targeted-refunds proposal. Furthermore, we study several alternative model specifications to confirm that our main finding concerning the effectiveness of the menu-of-refunds proposal is robust. This paper was accepted by Vishal Gaur, operations management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyq完成签到,获得积分10
1秒前
Yang完成签到 ,获得积分10
1秒前
1秒前
醉林完成签到,获得积分10
1秒前
颜云尔发布了新的文献求助10
1秒前
时闲完成签到,获得积分10
2秒前
舒一一发布了新的文献求助10
3秒前
英俊的铭应助欢喜的之瑶采纳,获得10
3秒前
Lucas应助lingjing采纳,获得10
3秒前
4秒前
4秒前
感动傀斗完成签到,获得积分10
5秒前
彭于晏应助韩胖喵采纳,获得10
5秒前
6秒前
车车完成签到,获得积分10
7秒前
糟糕的涵柏完成签到,获得积分10
7秒前
awoe完成签到,获得积分10
7秒前
7秒前
打打应助zz采纳,获得10
7秒前
一只五条悟完成签到,获得积分10
8秒前
qq发布了新的文献求助10
9秒前
9秒前
冷静的小虾米完成签到 ,获得积分10
9秒前
lxcy0612完成签到,获得积分10
9秒前
NNUsusan发布了新的文献求助10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
11秒前
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620