吸附
化学吸附
金属有机骨架
氢键
红外光谱学
密度泛函理论
金属
碳酸氢盐
配体(生物化学)
无机化学
化学
氢
结晶学
物理化学
分子
有机化学
计算化学
受体
生物化学
作者
Caitlin E. Bien,Qiao Liu,Casey R. Wade
标识
DOI:10.1021/acs.chemmater.9b04228
摘要
Heterobimetallic analogues of CFA-1 [Zn1+zM4-zX4(bibta)3, bibta2– = 5,5′-bibenzotriazolate, M = Co (z = 0), Ni (z = 1), Cu (z = 2.3), X = Cl–, Br–, CH3CO2–] have been prepared via postsynthetic cation exchange. Subsequent postsynthetic X–/HCO3– ligand exchange followed by thermal activation generates nucleophilic M–OH groups at the Kuratowski-type metal nodes of the heterobimetallic metal-organic frameworks (MOFs). While the Cu-exchanged MOF suffered from degradation as a result of the postsynthetic modifications, the Co and Ni analogues (Co–OH and Ni–OH) proved to be stable to activation, and room-temperature isotherm measurements show steep CO2 uptake at pressures compatible with direct air capture and other trace CO2 removal applications. Ni–OH exhibits a greater low-pressure CO2 capacity and higher isosteric heat of adsorption than Co–OH and the all-Zn MOF, Zn–OH. In situ diffuse reflectance infrared (IR) spectroscopy experiments indicate that Co–OH and Ni–OH adsorb CO2 via a M–OH → M–O2COH chemisorption mechanism aided by intercluster hydrogen-bonding interactions. However, CO2 adsorption in Ni–OH gives rise to spectroscopic features that are not observed for Co–OH and Zn–OH and can be attributed to Ni-bicarbonate groups that do not engage in intercluster hydrogen bonding. Density functional theory (DFT) calculations performed on model clusters support the experimentally observed trend in CO2 affinity.
科研通智能强力驱动
Strongly Powered by AbleSci AI