基质凝胶
细胞外基质
神经干细胞
材料科学
神经科学
大脑皮层
人脑
纳米技术
细胞
生物
细胞生物学
干细胞
生物化学
作者
Linna Zhou,Anne C. Wolfes,Yichen Li,Danny Cheuk Wing Chan,Ho Ko,Francis G. Szele,Hagan Bayley
标识
DOI:10.1002/adma.202002183
摘要
Abstract Current understanding of human brain development is rudimentary due to suboptimal in vitro and animal models. In particular, how initial cell positions impact subsequent human cortical development is unclear because experimental spatial control of cortical cell arrangement is technically challenging. 3D cell printing provides a rapid customized approach for patterning. However, it has relied on materials that do not represent the extracellular matrix (ECM) of brain tissue. Therefore, in the present work, a lipid‐bilayer‐supported printing technique is developed to 3D print human cortical cells in the soft, biocompatible ECM, Matrigel. Printed human neural stem cells (hNSCs) show high viability, neural differentiation, and the formation of functional, stimulus‐responsive neural networks. By using prepatterned arrangements of neurons and astrocytes, it is found that hNSC process outgrowth and migration into cell‐free matrix and into astrocyte‐containing matrix are similar in extent. However, astrocytes enhance the later developmental event of axon bundling. Both young and mature neurons migrate into compartments containing astrocytes; in contrast, astrocytes do not migrate into neuronal domains signifying nonreciprocal chemorepulsion. Therefore, precise prepatterning by 3D printing allows the construction of natural and unnatural patterns that yield important insights into human cerebral cortex development.
科研通智能强力驱动
Strongly Powered by AbleSci AI