微管
内科学
医学
压力过载
全内反射荧光显微镜
内分泌学
微管蛋白
微管聚合
肺动脉高压
细胞生物学
生物
肌肉肥大
病理
显微镜
心肌肥大
作者
Sasha Z. Prisco,Ping Yu Xiong,Rebecca R. Goldblum,François Potus,Kenneth Martinez Algarin,Lauren Rose,Thenappan Thenappan,Melissa K. Gardner,Stephen L. Archer,Kurt W. Prins
出处
期刊:Circulation
[Ovid Technologies (Wolters Kluwer)]
日期:2020-11-17
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.13912
摘要
Introduction: Female sex is associated with better right ventricular (RV) function in pulmonary hypertension (PH). The female sex hormone 17-beta-estradiol is postulated to mediate these differences, but the molecular mechanisms underlying these observations are incompletely defined. Interestingly, 17-beta-estradiol induces microtubule depolymerization in cell culture, which may be relevant to RV dysfunction because microtubule remodeling promotes RV dysfunction via dysregulation of junctophilin-2 (MT-JPH2 pathway). We speculate that 17-beta-estradiol modulates the MT-JPH2 pathway and preserves RV function in PH. Methods: Pressure-volume assessments quantified RV function in monocrotaline (MCT) and pulmonary artery-banded (PAB) rats. Immunoblots quantified the tubulin and junctophilin-2 protein content in RV extracts. Echocardiography quantified RV function by RV fractional area change for 379 human PH patients. Sedimentation experiments, fluorescence-based polymerization assessments, and total internal reflection fluorescence (TIRF) microscopy examined the effects of 17-beta-estradiol on microtubules. Results: Female sex results in better RV function and less dysregulation of the MT-JPH2 pathway in both MCT and PAB rats. Moreover, in human PH, female sex was associated with better RV function, which persisted after adjusting for afterload. 17-beta-estradiol inhibited microtubule polymerization in vitro and TIRF microscopy showed 17-beta-estradiol localized to microtubule tips and prevented further microtubule polymerization. Conclusions: Preclinical and human studies show that females are better able to tolerate RV pressure overload. There are blunted microtubule-mediated t-tubule remodeling and preserved RV function in female MCT and PAB rats. In human PH, females have better RV function. These findings may be due to 17-beta-estradiol directly regulating microtubule dynamics as shown by sedimentation and polymerization assays and TIRF microscopy. These results provide additional insights into sex-differences in RV function in PH.
科研通智能强力驱动
Strongly Powered by AbleSci AI