Nonuniform Hyper-Network Embedding with Dual Mechanism

计算机科学 对偶(语法数字) 嵌入 成对比较 财产(哲学) 理论计算机科学 光学(聚焦) GSM演进的增强数据速率 相似性(几何) 人工智能 功能(生物学) 拓扑(电路) 数学 组合数学 艺术 哲学 物理 文学类 认识论 进化生物学 光学 图像(数学) 生物
作者
Jie Huang,Chuan Chen,Fanghua Ye,Weibo Hu,Zibin Zheng
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:38 (3): 1-18 被引量:19
标识
DOI:10.1145/3388924
摘要

Network embedding which aims to learn the low-dimensional representations for vertices in networks has been extensively studied in recent years. Although there are various models designed for networks with different properties and different structures for different tasks, most of them are only applied to normal networks which only contain pairwise relationships between vertices. In many realistic cases, relationships among objects are not pairwise and such relationships can be better modeled by a hyper-network in which each edge can connect an uncertain number of vertices. In this article, we focus on two properties of hyper-networks: nonuniform and dual property. In order to make full use of these two properties, we firstly propose a flexible model called Hyper2vec to learn the embeddings of hyper-networks by applying a biased second order random walk strategy to hyper-networks in the framework of Skip-gram. Then, we combine the features of hyperedges by considering the dual hyper-networks to build a further model called NHNE based on 1D convolutional neural networks, and train a tuplewise similarity function for the nonuniform relationships in hyper-networks. Extensive experiments demonstrate the significant effectiveness of our methods for hyper-network embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Adorey3016发布了新的文献求助10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
充电宝应助朱瑾琛采纳,获得10
1秒前
1秒前
健忘菠萝完成签到 ,获得积分10
2秒前
2秒前
3秒前
科研通AI6应助能干的邹采纳,获得10
3秒前
3秒前
4秒前
4秒前
nextconnie发布了新的文献求助10
5秒前
5秒前
6秒前
LCXLA完成签到,获得积分10
7秒前
充电宝应助文右三采纳,获得10
7秒前
7秒前
almost发布了新的文献求助10
7秒前
科研菜鸟发布了新的文献求助10
8秒前
科研通AI6应助www123qe采纳,获得10
8秒前
PPP发布了新的文献求助10
8秒前
叶艳完成签到 ,获得积分10
9秒前
9秒前
9秒前
9秒前
隐形曼青应助复杂海豚采纳,获得10
10秒前
Owen应助超越辣鸡的梅吹采纳,获得10
10秒前
10秒前
12秒前
12秒前
呃呃呃发布了新的文献求助10
12秒前
LCXLA发布了新的文献求助20
13秒前
suchen发布了新的文献求助10
13秒前
在水一方应助北媛采纳,获得10
13秒前
yxc发布了新的文献求助10
13秒前
丘比特应助Fabio采纳,获得10
14秒前
浮游应助胡子采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997