已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nonuniform Hyper-Network Embedding with Dual Mechanism

计算机科学 对偶(语法数字) 嵌入 成对比较 财产(哲学) 理论计算机科学 光学(聚焦) GSM演进的增强数据速率 相似性(几何) 人工智能 功能(生物学) 拓扑(电路) 数学 组合数学 艺术 哲学 物理 文学类 认识论 进化生物学 光学 图像(数学) 生物
作者
Jie Huang,Chuan Chen,Fanghua Ye,Weibo Hu,Zibin Zheng
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
卷期号:38 (3): 1-18 被引量:19
标识
DOI:10.1145/3388924
摘要

Network embedding which aims to learn the low-dimensional representations for vertices in networks has been extensively studied in recent years. Although there are various models designed for networks with different properties and different structures for different tasks, most of them are only applied to normal networks which only contain pairwise relationships between vertices. In many realistic cases, relationships among objects are not pairwise and such relationships can be better modeled by a hyper-network in which each edge can connect an uncertain number of vertices. In this article, we focus on two properties of hyper-networks: nonuniform and dual property. In order to make full use of these two properties, we firstly propose a flexible model called Hyper2vec to learn the embeddings of hyper-networks by applying a biased second order random walk strategy to hyper-networks in the framework of Skip-gram. Then, we combine the features of hyperedges by considering the dual hyper-networks to build a further model called NHNE based on 1D convolutional neural networks, and train a tuplewise similarity function for the nonuniform relationships in hyper-networks. Extensive experiments demonstrate the significant effectiveness of our methods for hyper-network embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助读书的时候采纳,获得10
1秒前
虎正凯完成签到 ,获得积分10
1秒前
2秒前
2秒前
云影箫羽完成签到 ,获得积分10
2秒前
落水鎏情发布了新的文献求助10
3秒前
Rose发布了新的文献求助10
3秒前
钢铁猪猪侠完成签到 ,获得积分10
4秒前
4秒前
水果完成签到 ,获得积分10
5秒前
大圣发布了新的文献求助10
7秒前
8秒前
9秒前
chem完成签到,获得积分10
10秒前
wjj发布了新的文献求助10
10秒前
10秒前
FashionBoy应助Paridis采纳,获得10
13秒前
13秒前
水果关注了科研通微信公众号
14秒前
orixero应助puutteita采纳,获得10
15秒前
辣味锅包肉发布了新的文献求助100
19秒前
21秒前
xt完成签到,获得积分10
22秒前
温暖的白昼完成签到,获得积分10
22秒前
25秒前
26秒前
zzz完成签到,获得积分10
27秒前
27秒前
bkagyin应助杰杰大叔采纳,获得10
27秒前
zz完成签到,获得积分10
28秒前
木易禾月完成签到,获得积分20
29秒前
30秒前
puutteita发布了新的文献求助10
30秒前
31秒前
阳光向上的长峥完成签到,获得积分10
31秒前
31秒前
32秒前
123发布了新的文献求助10
32秒前
乐乐应助Rose采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934725
求助须知:如何正确求助?哪些是违规求助? 4202490
关于积分的说明 13057604
捐赠科研通 3976864
什么是DOI,文献DOI怎么找? 2179284
邀请新用户注册赠送积分活动 1195452
关于科研通互助平台的介绍 1106840