Host–Parasite: Graph LSTM-in-LSTM for Group Activity Recognition

推论 计算机科学 人工智能 图形 残余物 活动识别 代表(政治) 机器学习 自然语言处理 理论计算机科学 算法 政治学 政治 法学
作者
Xiangbo Shu,Liyan Zhang,Yunlian Sun,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 663-674 被引量:176
标识
DOI:10.1109/tnnls.2020.2978942
摘要

This article aims to tackle the problem of group activity recognition in the multiple-person scene. To model the group activity with multiple persons, most long short-term memory (LSTM)-based methods first learn the person-level action representations by several LSTMs and then integrate all the person-level action representations into the following LSTM to learn the group-level activity representation. This type of solution is a two-stage strategy, which neglects the "host-parasite" relationship between the group-level activity ("host") and person-level actions ("parasite") in spatiotemporal space. To this end, we propose a novel graph LSTM-in-LSTM (GLIL) for group activity recognition by modeling the person-level actions and the group-level activity simultaneously. GLIL is a "host-parasite" architecture, which can be seen as several person LSTMs (P-LSTMs) in the local view or a graph LSTM (G-LSTM) in the global view. Specifically, P-LSTMs model the person-level actions based on the interactions among persons. Meanwhile, G-LSTM models the group-level activity, where the person-level motion information in multiple P-LSTMs is selectively integrated and stored into G-LSTM based on their contributions to the inference of the group activity class. Furthermore, to use the person-level temporal features instead of the person-level static features as the input of GLIL, we introduce a residual LSTM with the residual connection to learn the person-level residual features, consisting of temporal features and static features. Experimental results on two public data sets illustrate the effectiveness of the proposed GLIL compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助土豆采纳,获得10
刚刚
垃圾桶完成签到 ,获得积分10
刚刚
superhero完成签到,获得积分10
刚刚
星期一发布了新的文献求助10
1秒前
1秒前
bingxinl应助简单小土豆采纳,获得20
1秒前
1秒前
2秒前
阿司匹林发布了新的文献求助30
2秒前
2秒前
花花发布了新的文献求助10
2秒前
研友_ED5GK应助丫丫采纳,获得10
2秒前
SolderOH完成签到,获得积分10
3秒前
3秒前
考槃在涧完成签到 ,获得积分10
3秒前
西出钰门完成签到,获得积分10
3秒前
炙热嘉懿发布了新的文献求助10
3秒前
爱吃冬瓜发布了新的文献求助10
4秒前
5秒前
细腻慕儿发布了新的文献求助10
5秒前
华仔应助解师采纳,获得10
5秒前
贾不可完成签到,获得积分10
5秒前
lkl完成签到,获得积分10
6秒前
屈绮兰发布了新的文献求助100
6秒前
像个小蛤蟆完成签到 ,获得积分10
7秒前
动听的谷秋完成签到 ,获得积分10
8秒前
封封发布了新的文献求助10
8秒前
8秒前
ruby完成签到,获得积分10
8秒前
9秒前
9秒前
桃子完成签到,获得积分10
9秒前
兜兜车完成签到,获得积分10
9秒前
Frank完成签到,获得积分10
9秒前
yn发布了新的文献求助10
9秒前
花花完成签到,获得积分10
9秒前
Lucas应助汪汪采纳,获得10
10秒前
大阳完成签到,获得积分10
10秒前
科研狗完成签到,获得积分20
10秒前
美丽柠檬完成签到,获得积分10
10秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3440678
求助须知:如何正确求助?哪些是违规求助? 3037173
关于积分的说明 8967721
捐赠科研通 2725656
什么是DOI,文献DOI怎么找? 1495057
科研通“疑难数据库(出版商)”最低求助积分说明 691066
邀请新用户注册赠送积分活动 687754