Host–Parasite: Graph LSTM-in-LSTM for Group Activity Recognition

推论 计算机科学 人工智能 图形 残余物 活动识别 代表(政治) 机器学习 自然语言处理 理论计算机科学 算法 政治学 政治 法学
作者
Xiangbo Shu,Liyan Zhang,Yunlian Sun,Jinhui Tang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (2): 663-674 被引量:176
标识
DOI:10.1109/tnnls.2020.2978942
摘要

This article aims to tackle the problem of group activity recognition in the multiple-person scene. To model the group activity with multiple persons, most long short-term memory (LSTM)-based methods first learn the person-level action representations by several LSTMs and then integrate all the person-level action representations into the following LSTM to learn the group-level activity representation. This type of solution is a two-stage strategy, which neglects the "host-parasite" relationship between the group-level activity ("host") and person-level actions ("parasite") in spatiotemporal space. To this end, we propose a novel graph LSTM-in-LSTM (GLIL) for group activity recognition by modeling the person-level actions and the group-level activity simultaneously. GLIL is a "host-parasite" architecture, which can be seen as several person LSTMs (P-LSTMs) in the local view or a graph LSTM (G-LSTM) in the global view. Specifically, P-LSTMs model the person-level actions based on the interactions among persons. Meanwhile, G-LSTM models the group-level activity, where the person-level motion information in multiple P-LSTMs is selectively integrated and stored into G-LSTM based on their contributions to the inference of the group activity class. Furthermore, to use the person-level temporal features instead of the person-level static features as the input of GLIL, we introduce a residual LSTM with the residual connection to learn the person-level residual features, consisting of temporal features and static features. Experimental results on two public data sets illustrate the effectiveness of the proposed GLIL compared with state-of-the-art methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司纤户羽完成签到,获得积分10
刚刚
结实的三颜完成签到,获得积分20
刚刚
刚刚
lhy完成签到,获得积分20
1秒前
1秒前
2秒前
LYJ发布了新的文献求助20
2秒前
zhangpeipei完成签到,获得积分10
4秒前
FashionBoy应助三番又六次采纳,获得10
4秒前
爆米花应助Tsuki采纳,获得10
4秒前
fdsdvczx完成签到,获得积分20
5秒前
zkh完成签到,获得积分10
5秒前
hhh完成签到,获得积分10
6秒前
诚心的以寒完成签到,获得积分10
7秒前
科研通AI6应助沉静丹寒采纳,获得10
7秒前
fdsdvczx发布了新的文献求助10
7秒前
我是老大应助一二采纳,获得10
8秒前
8秒前
8秒前
dili发布了新的文献求助10
9秒前
爱因斯坦小哲完成签到,获得积分10
9秒前
慕念完成签到,获得积分10
10秒前
今后应助疯狂的野狗采纳,获得10
10秒前
11秒前
中和皇极应助liujinzhi采纳,获得10
12秒前
MP发布了新的文献求助10
12秒前
喵喵完成签到 ,获得积分10
12秒前
taozi完成签到,获得积分10
12秒前
科研通AI6应助666采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
14秒前
lzq发布了新的文献求助10
19秒前
su发布了新的文献求助10
19秒前
20秒前
Cool完成签到,获得积分10
21秒前
大模型应助prode采纳,获得10
21秒前
丘比特应助健康的半仙采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589368
求助须知:如何正确求助?哪些是违规求助? 4674147
关于积分的说明 14791974
捐赠科研通 4628350
什么是DOI,文献DOI怎么找? 2532283
邀请新用户注册赠送积分活动 1500934
关于科研通互助平台的介绍 1468454