Thermodynamics-based Artificial Neural Networks for constitutive modeling

人工神经网络 本构方程 计算机科学 人工智能 热力学定律 消散 统计物理学 物理 非平衡态热力学 有限元法 热力学
作者
Filippo Masi,Ioannis Stefanou,Paolo Vannucci,Victor Maffi-Berthier
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:147: 104277-104277 被引量:127
标识
DOI:10.1016/j.jmps.2020.104277
摘要

Machine Learning methods and, in particular, Artificial Neural Networks (ANNs) have demonstrated promising capabilities in material constitutive modeling. One of the main drawbacks of such approaches is the lack of a rigorous frame based on the laws of physics. This may render physically inconsistent the predictions of a trained network, which can be even dangerous for real applications. Here we propose a new class of data-driven, physics-based, neural networks for constitutive modeling of strain rate independent processes at the material point level, which we define as Thermodynamics-based Artificial Neural Networks (TANNs). The two basic principles of thermodynamics are encoded in the network’s architecture by taking advantage of automatic differentiation to compute the numerical derivatives of a network with respect to its inputs. In this way, derivatives of the free-energy, the dissipation rate and their relation with the stress and internal state variables are hardwired in the architecture of TANNs. Consequently, our approach does not have to identify the underlying pattern of thermodynamic laws during training, reducing the need of large data-sets. Moreover the training is more efficient and robust, and the predictions more accurate. Finally and more important, the predictions remain thermodynamically consistent, even for unseen data. Based on these features, TANNs are a starting point for data-driven, physics-based constitutive modeling with neural networks. We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, using both hyper- and hypo-plasticity models. Strain hardening and softening are also considered for the hyper-plastic scenario. Detailed comparisons show that the predictions of TANNs outperform those of standard ANNs. Finally, we demonstrate that the implementation of the laws of thermodynamics confers to TANNs high robustness in the presence of noise in the training data, compared to standard approaches. TANNs’ architecture is general, enabling applications to materials with different or more complex behavior, without any modification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酥酥发布了新的文献求助10
1秒前
贺贺完成签到,获得积分10
1秒前
2秒前
木辛发布了新的文献求助10
2秒前
2秒前
lll发布了新的文献求助10
2秒前
Owen应助潇洒的冷玉采纳,获得10
3秒前
完美世界应助li采纳,获得10
3秒前
Jane发布了新的文献求助10
3秒前
沐泽关注了科研通微信公众号
4秒前
彭于晏应助滑西列夫斯稽采纳,获得10
4秒前
炸鸡加热发布了新的文献求助10
4秒前
共享精神应助迅速冬天采纳,获得10
4秒前
5秒前
lilixia发布了新的文献求助10
5秒前
糖丸子啊啊啊啊完成签到,获得积分10
5秒前
guohengxu发布了新的文献求助10
5秒前
小可完成签到,获得积分10
6秒前
7秒前
Orange应助你怎么睡得着觉采纳,获得10
7秒前
李爱国应助罗才宇采纳,获得10
7秒前
mjx完成签到,获得积分10
7秒前
8秒前
传奇3应助Hawnyoung采纳,获得10
8秒前
研友_VZG7GZ应助111采纳,获得10
8秒前
科先生发布了新的文献求助10
8秒前
8秒前
搜集达人应助头大的土狗采纳,获得10
9秒前
鹿凡雁发布了新的文献求助10
9秒前
9秒前
9秒前
duj622完成签到 ,获得积分10
10秒前
10秒前
星辰大海应助lll采纳,获得10
11秒前
caifan发布了新的文献求助10
11秒前
清爽念柏完成签到 ,获得积分10
11秒前
努力的小狗屁应助禹无极采纳,获得10
11秒前
Tina发布了新的文献求助10
11秒前
11秒前
qiu发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416335
求助须知:如何正确求助?哪些是违规求助? 4532651
关于积分的说明 14135629
捐赠科研通 4448510
什么是DOI,文献DOI怎么找? 2440252
邀请新用户注册赠送积分活动 1432175
关于科研通互助平台的介绍 1409727