Thermodynamics-based Artificial Neural Networks for constitutive modeling

人工神经网络 本构方程 计算机科学 人工智能 热力学定律 消散 统计物理学 物理 非平衡态热力学 有限元法 热力学
作者
Filippo Masi,Ioannis Stefanou,Paolo Vannucci,Victor Maffi-Berthier
出处
期刊:Journal of The Mechanics and Physics of Solids [Elsevier]
卷期号:147: 104277-104277 被引量:127
标识
DOI:10.1016/j.jmps.2020.104277
摘要

Machine Learning methods and, in particular, Artificial Neural Networks (ANNs) have demonstrated promising capabilities in material constitutive modeling. One of the main drawbacks of such approaches is the lack of a rigorous frame based on the laws of physics. This may render physically inconsistent the predictions of a trained network, which can be even dangerous for real applications. Here we propose a new class of data-driven, physics-based, neural networks for constitutive modeling of strain rate independent processes at the material point level, which we define as Thermodynamics-based Artificial Neural Networks (TANNs). The two basic principles of thermodynamics are encoded in the network’s architecture by taking advantage of automatic differentiation to compute the numerical derivatives of a network with respect to its inputs. In this way, derivatives of the free-energy, the dissipation rate and their relation with the stress and internal state variables are hardwired in the architecture of TANNs. Consequently, our approach does not have to identify the underlying pattern of thermodynamic laws during training, reducing the need of large data-sets. Moreover the training is more efficient and robust, and the predictions more accurate. Finally and more important, the predictions remain thermodynamically consistent, even for unseen data. Based on these features, TANNs are a starting point for data-driven, physics-based constitutive modeling with neural networks. We demonstrate the wide applicability of TANNs for modeling elasto-plastic materials, using both hyper- and hypo-plasticity models. Strain hardening and softening are also considered for the hyper-plastic scenario. Detailed comparisons show that the predictions of TANNs outperform those of standard ANNs. Finally, we demonstrate that the implementation of the laws of thermodynamics confers to TANNs high robustness in the presence of noise in the training data, compared to standard approaches. TANNs’ architecture is general, enabling applications to materials with different or more complex behavior, without any modification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ding应助zouzou采纳,获得20
刚刚
1秒前
3秒前
bkagyin应助白志文采纳,获得10
4秒前
xzhu完成签到,获得积分10
4秒前
genggeng完成签到,获得积分10
5秒前
苻人英完成签到,获得积分10
6秒前
鸭鸭发布了新的文献求助10
7秒前
冉冉发布了新的文献求助10
8秒前
8秒前
8秒前
雪白砖家发布了新的文献求助10
10秒前
kk发布了新的文献求助10
11秒前
Mry完成签到,获得积分10
12秒前
Sylvia完成签到 ,获得积分10
13秒前
汉堡包应助mhx采纳,获得10
13秒前
13秒前
13秒前
14秒前
ZQN发布了新的文献求助10
14秒前
social_yjj关注了科研通微信公众号
14秒前
缓慢的海云完成签到,获得积分10
15秒前
浅尝离白应助冷月_孤城采纳,获得30
15秒前
16秒前
赘婿应助123采纳,获得10
16秒前
浅辰完成签到 ,获得积分10
16秒前
JingyuHuang发布了新的文献求助10
17秒前
星燃完成签到,获得积分10
17秒前
鸭鸭完成签到,获得积分10
17秒前
18秒前
JIALING完成签到,获得积分10
18秒前
19秒前
农学博士后完成签到,获得积分10
19秒前
都暻秀女朋友完成签到,获得积分10
19秒前
颠儿发布了新的文献求助10
20秒前
小马甲应助无言采纳,获得10
20秒前
20秒前
21秒前
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135273
求助须知:如何正确求助?哪些是违规求助? 2786262
关于积分的说明 7776475
捐赠科研通 2442202
什么是DOI,文献DOI怎么找? 1298495
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847