Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
令狐远航完成签到,获得积分20
刚刚
lqq完成签到,获得积分10
刚刚
用户5063899完成签到,获得积分10
1秒前
serein发布了新的文献求助10
1秒前
1秒前
1秒前
wz发布了新的文献求助10
1秒前
单于无极完成签到,获得积分10
2秒前
蔡博颖完成签到,获得积分10
2秒前
ppppp完成签到 ,获得积分10
2秒前
打打应助小鱼儿采纳,获得10
2秒前
wfrg发布了新的文献求助10
3秒前
戊烷发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
小二郎应助笑点低的茉莉采纳,获得10
4秒前
小蘑菇应助小诗采纳,获得10
4秒前
姬鲁宁完成签到 ,获得积分10
4秒前
顾矜应助令狐远航采纳,获得10
4秒前
4秒前
乐事薯片噢完成签到,获得积分10
4秒前
盲目逛恋完成签到,获得积分10
5秒前
dudu完成签到,获得积分10
5秒前
正直三颜完成签到,获得积分10
5秒前
淮南丿老怪完成签到,获得积分10
5秒前
5秒前
NexusExplorer应助lingVing瑜采纳,获得10
6秒前
小白鼠发布了新的文献求助10
6秒前
minikk完成签到,获得积分20
6秒前
乐意李完成签到,获得积分10
7秒前
艳阳天完成签到,获得积分10
7秒前
五十完成签到,获得积分10
7秒前
跳跃夜白发布了新的文献求助20
7秒前
xue完成签到,获得积分10
8秒前
kyu111发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439377
求助须知:如何正确求助?哪些是违规求助? 4550536
关于积分的说明 14225071
捐赠科研通 4471548
什么是DOI,文献DOI怎么找? 2450403
邀请新用户注册赠送积分活动 1441270
关于科研通互助平台的介绍 1417882