Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大小发布了新的文献求助10
3秒前
会幸福的发布了新的文献求助10
3秒前
今后应助风清扬采纳,获得10
7秒前
打打应助风清扬采纳,获得10
7秒前
7秒前
sc发布了新的文献求助10
7秒前
7秒前
9秒前
wyg1994发布了新的文献求助10
11秒前
12秒前
12秒前
领导范儿应助形随将至采纳,获得10
13秒前
14秒前
水心完成签到 ,获得积分10
15秒前
16秒前
许思真完成签到,获得积分10
16秒前
谦谦神棍发布了新的文献求助10
18秒前
药学小团子完成签到 ,获得积分10
19秒前
leehong发布了新的文献求助10
19秒前
asdlxz发布了新的文献求助10
20秒前
Joshua完成签到,获得积分0
21秒前
土土完成签到,获得积分10
21秒前
by完成签到,获得积分10
21秒前
鲤角兽发布了新的文献求助10
22秒前
wanci应助hope采纳,获得10
23秒前
24秒前
25秒前
形随将至发布了新的文献求助10
30秒前
善学以致用应助wdy337采纳,获得10
32秒前
zzz完成签到 ,获得积分10
32秒前
完美世界应助鲤角兽采纳,获得10
34秒前
leehong完成签到,获得积分20
34秒前
直率的宛海完成签到,获得积分10
35秒前
asdlxz完成签到,获得积分20
35秒前
翻斗花园爆破手小胡完成签到,获得积分10
37秒前
Zu发布了新的文献求助10
38秒前
39秒前
受伤的严青完成签到 ,获得积分10
40秒前
41秒前
橙子完成签到 ,获得积分10
41秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457592
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292461
捐赠科研通 4488625
什么是DOI,文献DOI怎么找? 2458659
邀请新用户注册赠送积分活动 1448644
关于科研通互助平台的介绍 1424323