Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲜艳的绮菱完成签到,获得积分20
刚刚
无极微光应助畅快忆秋采纳,获得20
刚刚
独特的尔风完成签到,获得积分10
1秒前
1秒前
下克斯发布了新的文献求助80
1秒前
奉天逍遥发布了新的文献求助10
4秒前
俏皮夏天发布了新的文献求助10
5秒前
5秒前
6秒前
英吉利25发布了新的文献求助30
6秒前
7秒前
Kiki完成签到 ,获得积分10
7秒前
8秒前
9秒前
科研通AI6应助NGU采纳,获得10
10秒前
lichanshen完成签到,获得积分10
10秒前
222完成签到,获得积分10
11秒前
奉天逍遥完成签到,获得积分10
11秒前
11秒前
以牧发布了新的文献求助30
11秒前
杨茜然完成签到 ,获得积分10
11秒前
12秒前
12秒前
12秒前
ni发布了新的文献求助10
15秒前
15秒前
lin发布了新的文献求助10
16秒前
18秒前
谢许杯商应助mmyhn采纳,获得10
18秒前
年轻花卷完成签到 ,获得积分10
18秒前
求知的周发布了新的文献求助10
18秒前
田様应助Nancy采纳,获得10
18秒前
dw发布了新的文献求助10
19秒前
esther颖完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
赘婿应助柯亦云采纳,获得10
20秒前
20秒前
天天完成签到 ,获得积分10
22秒前
jawa完成签到 ,获得积分10
22秒前
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687