清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳言2009完成签到 ,获得积分10
5秒前
天真千易发布了新的文献求助10
9秒前
吕佳完成签到 ,获得积分10
19秒前
幽默的机器猫完成签到,获得积分10
22秒前
林夕完成签到 ,获得积分10
25秒前
邓代容完成签到 ,获得积分10
25秒前
40秒前
MM完成签到 ,获得积分10
59秒前
wang5945完成签到 ,获得积分10
1分钟前
慕青应助找文献的天才狗采纳,获得10
1分钟前
王波完成签到 ,获得积分10
1分钟前
铑氟钌发少年狂完成签到 ,获得积分10
1分钟前
爱的魔力转圈圈完成签到,获得积分10
1分钟前
英姑应助科研通管家采纳,获得10
1分钟前
yj完成签到,获得积分10
1分钟前
余念安完成签到 ,获得积分10
1分钟前
美丽妙海发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
fanssw完成签到 ,获得积分0
2分钟前
找文献的天才狗完成签到,获得积分10
2分钟前
优雅的平安完成签到 ,获得积分10
2分钟前
芬芬完成签到 ,获得积分10
2分钟前
入袍完成签到,获得积分10
2分钟前
施光玲44931完成签到 ,获得积分10
2分钟前
浪漫反派发布了新的文献求助10
2分钟前
Andy完成签到 ,获得积分10
2分钟前
Lilian完成签到 ,获得积分10
2分钟前
研友_LN25rL完成签到,获得积分10
2分钟前
3分钟前
3分钟前
自然的含蕾完成签到 ,获得积分0
3分钟前
3分钟前
烟花应助袁青寒采纳,获得10
3分钟前
望向天空的鱼完成签到 ,获得积分10
3分钟前
游泳池完成签到,获得积分10
4分钟前
qianzhihe2完成签到,获得积分10
4分钟前
Jasper应助袁青寒采纳,获得10
4分钟前
magictoo完成签到,获得积分10
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450283
求助须知:如何正确求助?哪些是违规求助? 4558098
关于积分的说明 14265435
捐赠科研通 4481519
什么是DOI,文献DOI怎么找? 2454891
邀请新用户注册赠送积分活动 1445655
关于科研通互助平台的介绍 1421628