Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助Tracy麦子采纳,获得10
1秒前
小情绪完成签到 ,获得积分10
4秒前
自觉向秋完成签到,获得积分10
5秒前
无聊的听寒完成签到 ,获得积分10
5秒前
酷波er应助不扯先生采纳,获得10
6秒前
6秒前
鲤鱼灵阳完成签到,获得积分10
6秒前
Owen应助Chen采纳,获得10
6秒前
黎威完成签到,获得积分10
8秒前
11秒前
迷路桃子完成签到 ,获得积分10
12秒前
法外潮湿宝贝完成签到 ,获得积分10
13秒前
14秒前
wuminhui完成签到 ,获得积分10
14秒前
16秒前
螺蛳粉发布了新的文献求助10
17秒前
高小谦完成签到 ,获得积分10
18秒前
19秒前
易殇完成签到,获得积分10
21秒前
21秒前
23秒前
24秒前
思源应助大旭采纳,获得10
26秒前
唠叨的白萱完成签到,获得积分10
26秒前
不扯先生发布了新的文献求助10
26秒前
sanmu给mzb的求助进行了留言
27秒前
可爱倪倪发布了新的文献求助10
27秒前
8R60d8应助都大锤采纳,获得10
27秒前
mz完成签到 ,获得积分10
28秒前
英姑应助Master采纳,获得10
29秒前
自然浩阑发布了新的文献求助30
30秒前
31秒前
34秒前
li发布了新的文献求助10
39秒前
xixixixi完成签到 ,获得积分10
39秒前
从容荠完成签到,获得积分10
39秒前
李健应助热心的友灵采纳,获得10
40秒前
寻道图强应助科研通管家采纳,获得30
41秒前
科目三应助科研通管家采纳,获得10
41秒前
852应助科研通管家采纳,获得10
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159794
求助须知:如何正确求助?哪些是违规求助? 2810676
关于积分的说明 7889157
捐赠科研通 2469817
什么是DOI,文献DOI怎么找? 1315087
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012