已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的冰薇完成签到 ,获得积分10
3秒前
雨霧雲完成签到,获得积分10
3秒前
guo完成签到 ,获得积分10
10秒前
14秒前
14秒前
15秒前
16秒前
英俊的铭应助烟花砰砰砰采纳,获得10
17秒前
ww发布了新的文献求助10
18秒前
lqc完成签到,获得积分20
19秒前
冷酷夏真完成签到 ,获得积分10
19秒前
20秒前
打打应助judy采纳,获得10
23秒前
快乐星球发布了新的文献求助10
23秒前
24秒前
abc完成签到 ,获得积分10
27秒前
28秒前
29秒前
柠檬完成签到 ,获得积分10
30秒前
31秒前
31秒前
Yihua发布了新的文献求助10
34秒前
35秒前
judy发布了新的文献求助10
37秒前
充电宝应助烟花砰砰砰采纳,获得30
41秒前
傲娇皮皮虾完成签到 ,获得积分10
41秒前
Wilddeer完成签到 ,获得积分10
42秒前
44秒前
kate完成签到,获得积分10
45秒前
科研通AI2S应助合适问旋采纳,获得10
45秒前
lucky完成签到,获得积分10
46秒前
123完成签到 ,获得积分10
46秒前
苹果果汁完成签到,获得积分10
46秒前
47秒前
47秒前
开心香岚发布了新的文献求助10
48秒前
南星完成签到 ,获得积分10
50秒前
852应助娇气的雁兰采纳,获得10
51秒前
打打应助研友_nV21Vn采纳,获得10
51秒前
芋头芋头大芋头完成签到 ,获得积分10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4972997
求助须知:如何正确求助?哪些是违规求助? 4228809
关于积分的说明 13170845
捐赠科研通 4017249
什么是DOI,文献DOI怎么找? 2198233
邀请新用户注册赠送积分活动 1210911
关于科研通互助平台的介绍 1125719