亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我啊发布了新的文献求助10
1秒前
fishss完成签到 ,获得积分0
25秒前
浮游应助xiaozhang采纳,获得10
34秒前
可爱的函函应助xiaozhang采纳,获得10
34秒前
萝卜猪完成签到,获得积分10
44秒前
浮游应助科研通管家采纳,获得10
54秒前
浮游应助科研通管家采纳,获得10
55秒前
浮游应助科研通管家采纳,获得10
55秒前
Jasper应助留胡子的云朵采纳,获得10
59秒前
1分钟前
1分钟前
宋芽芽发布了新的文献求助100
1分钟前
1分钟前
1分钟前
1分钟前
留胡子的云朵完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
领导范儿应助可爱花瓣采纳,获得10
3分钟前
3分钟前
可爱花瓣发布了新的文献求助10
3分钟前
孤独剑完成签到 ,获得积分10
3分钟前
我是老大应助vamcello采纳,获得10
4分钟前
4分钟前
vamcello发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
汉堡包应助小飞采纳,获得10
5分钟前
5分钟前
小飞发布了新的文献求助10
5分钟前
路漫漫其修远兮完成签到 ,获得积分10
6分钟前
Willow完成签到,获得积分10
6分钟前
6分钟前
中级奥术师完成签到,获得积分10
6分钟前
6分钟前
浪漫反派完成签到 ,获得积分20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426576
求助须知:如何正确求助?哪些是违规求助? 4540269
关于积分的说明 14171896
捐赠科研通 4458045
什么是DOI,文献DOI怎么找? 2444792
邀请新用户注册赠送积分活动 1435864
关于科研通互助平台的介绍 1413309