Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助20
1秒前
哈哈完成签到,获得积分10
1秒前
雷欧奥特曼完成签到,获得积分10
1秒前
谢幼枫完成签到,获得积分10
1秒前
记忆力超人完成签到,获得积分10
2秒前
常常完成签到,获得积分10
2秒前
星辰完成签到 ,获得积分10
2秒前
DT完成签到,获得积分10
2秒前
西扬完成签到 ,获得积分10
3秒前
一站到底完成签到 ,获得积分10
5秒前
文静的白羊完成签到,获得积分10
7秒前
考啥都上岸完成签到,获得积分10
8秒前
lovekobe完成签到,获得积分10
9秒前
memo完成签到,获得积分10
9秒前
MissDZ完成签到,获得积分10
9秒前
鱼叮叮完成签到,获得积分10
10秒前
向连虎完成签到,获得积分20
10秒前
奋斗完成签到,获得积分10
10秒前
10秒前
研柒完成签到 ,获得积分10
11秒前
xyzdmmm完成签到,获得积分10
11秒前
杨白秋完成签到,获得积分0
11秒前
nmm完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
miamikk完成签到 ,获得积分10
14秒前
zzz完成签到,获得积分10
14秒前
lcx完成签到,获得积分10
14秒前
shuicaoxi发布了新的文献求助50
15秒前
陈c完成签到,获得积分10
15秒前
明天发布了新的文献求助10
15秒前
忘崽子小拳头完成签到,获得积分10
16秒前
胡女士完成签到,获得积分10
17秒前
帅气的杰瑞完成签到,获得积分10
18秒前
拉长的晓蕾完成签到,获得积分10
19秒前
123完成签到,获得积分10
19秒前
esdese完成签到,获得积分10
19秒前
畅快的煜祺完成签到,获得积分10
19秒前
ilk666完成签到,获得积分10
20秒前
尤瑟夫完成签到 ,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365