已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combined electricity-heat-cooling-gas load forecasting model for integrated energy system based on multi-task learning and least square support vector machine

支持向量机 能量(信号处理) 任务(项目管理) 计算机科学 人工智能 工程类 模拟 机器学习 系统工程 电气工程 数学 统计
作者
Zhongfu Tan,Gejirifu De,Menglu Li,Hongyu Lin,Shenbo Yang,Li‐Shan Huang,Qingkun Tan
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:248: 119252-119252 被引量:192
标识
DOI:10.1016/j.jclepro.2019.119252
摘要

Accurate forecasting of the combined loads of electricity, heat, cooling and gas in the integrated energy system is the key to improve the comprehensive efficiency and gain more economic benefits of various types of energy. As an important part of the new generation of energy systems, the integrated energy system contains energy subsystems such as electricity, heat, cooling and gas, and each subsystem employs energy supply, conversion and storage equipment. This form of energy system achieves the coupling of different types of energy in different links. Based on this, this paper firstly combs the coupling relations among different integrated energy subsystems. Secondly, with the help of the weight sharing mechanism in the multi-task learning and the idea of least square support vector machine, a combined forecasting model of electricity, heat, cooling and gas loads based on the multi-task learning and least square support vector machine is constructed. Finally, in order to verify the effectiveness of the forecasting model proposed in this paper, the actual data from the integrated energy system in Suzhou Industrial Park are selected for a case study. The results show that: (1) the combined forecasting model based on multi-task learning and least square support vector machine can accurately predict the electricity, heat, cooling and gas loads of the park integrated energy system. (2) Compared with extreme learning machine and least square support vector machine, the combined forecasting model based on the multi-task learning and least square support vector machine increased the forecasting accuracy of a workday and a weekend by 18.00% and 19.19%, and the average forecasting accuracy increased by 18.60%. (3) Compared with extreme learning machine and least square support vector machine, the combined forecasting model can effectively shorten the training time which is reduced by 58.1% and 35.22%. The results further reflect the application effect of the multi-task learning in energy demand forecasting of the integrated energy system and have a very broad reference value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
panana发布了新的文献求助10
3秒前
Guoct0916发布了新的文献求助50
4秒前
雪白的乘风完成签到 ,获得积分10
6秒前
GQ完成签到,获得积分10
6秒前
2224270676完成签到,获得积分10
7秒前
独特跳跳糖完成签到 ,获得积分10
7秒前
CodeCraft应助感动的广缘采纳,获得10
7秒前
心灵美砖头完成签到,获得积分10
8秒前
不吃番茄完成签到 ,获得积分10
8秒前
卓初露完成签到 ,获得积分10
9秒前
9秒前
遇上就这样吧完成签到,获得积分0
11秒前
Guoct0916完成签到,获得积分10
11秒前
云淡风轻一宝完成签到,获得积分10
11秒前
heart完成签到 ,获得积分10
11秒前
壶壶壶完成签到 ,获得积分10
11秒前
肉肉完成签到 ,获得积分10
12秒前
小HO完成签到 ,获得积分10
12秒前
mmy发布了新的文献求助10
12秒前
13秒前
Vision820完成签到,获得积分10
15秒前
15秒前
Mano完成签到,获得积分10
15秒前
shanshan3000完成签到,获得积分10
15秒前
思源应助科研通管家采纳,获得10
16秒前
夏来应助科研通管家采纳,获得10
16秒前
xiemeili完成签到 ,获得积分10
16秒前
桐桐应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得30
17秒前
17秒前
17秒前
Dou完成签到,获得积分10
17秒前
老师心腹大患完成签到,获得积分10
18秒前
mmm完成签到 ,获得积分10
18秒前
勤奋帅帅完成签到,获得积分10
18秒前
wren完成签到,获得积分10
18秒前
庚辰梦秋完成签到,获得积分10
18秒前
啊哒吸哇完成签到,获得积分10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994596
求助须知:如何正确求助?哪些是违规求助? 3534893
关于积分的说明 11266757
捐赠科研通 3274743
什么是DOI,文献DOI怎么找? 1806464
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749

今日热心研友

孙燕
30
yx_cheng
1
夏来
10
呉冥11
1
花开富贵
10
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10