已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of radiomic features and support vector machine to discriminate subjective cognitive decline and healthy controls

支持向量机 人工智能 交叉验证 特征选择 特征提取 神经影像学 计算机辅助设计 计算机科学 医学 机器学习 试验装置 预处理器 模式识别(心理学) 精神科 工程类 工程制图
作者
Yue Wu,Taoran Li,Ying Han,Jiehui Jiang
标识
DOI:10.1109/embc44109.2020.9175840
摘要

Subjective cognitive decline (SCD) is a high-risk preclinical stage in the progress of Alzheimer's disease (AD). Its timely diagnosis is of great significance for older adults. Though multi-parameter magnetic resonance imaging (MPMRI) is a noninvasive neuroimaging technique to detect SCD, the lack of biomarkers and computed aided diagnosis (CAD) tools is a major concern for its application. Radiomics, a high-dimensional imaging feature extraction method, has been widely used for identifying biomarkers and developing CAD tools in oncological studies. Therefore, in this study, we aimed to investigate whether the radiomic approach could be used for the diagnosis of SCD. In the proposed radiomic approach, we mainly performed four steps: image preprocessing, feature extraction and screening, and classification. The dataset from Xuanwu Hospital, Beijing, China, was used in this study, including 105 healthy controls (HC) and 130 SCD subjects. All subjects were divided into one training & validation group and one test group. We extracted 30128 radiomic features from MPMRI of each subject. The t-test, autocorrelation, and Fisher score were performed for feature selection, and we deployed the support vector machine (SVM) for classification. The above process was performed 100 times with 5-fold cross-validation. The results showed that the accuracy, sensitivity, and specificity of classification was 89.03%±5.37%, 85.44%±9.28% and 91.97%±6.38% in the validation set and 84.70%±4.68%, 86.98%±10.49% and 82.59%±7.07% in the test set. In conclusion, this study has shown that the radiomic approach could be used to discriminate SCD and HC with high accuracy and sensitivity effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沁沁沁完成签到 ,获得积分10
刚刚
1秒前
吖123发布了新的文献求助10
4秒前
肉丸完成签到 ,获得积分10
4秒前
翻译度发布了新的文献求助10
5秒前
bobo发布了新的文献求助10
5秒前
橘橘橘子皮完成签到 ,获得积分10
5秒前
果汁完成签到 ,获得积分10
6秒前
研友_Z6Qrbn完成签到,获得积分10
6秒前
烂漫的蜡烛完成签到 ,获得积分10
11秒前
12秒前
安详初蓝完成签到 ,获得积分10
14秒前
大个应助吖123采纳,获得10
14秒前
16秒前
852应助乐观的醉薇采纳,获得10
16秒前
liujingyi发布了新的文献求助10
17秒前
乔苏惠娜发布了新的文献求助10
21秒前
24秒前
36038138完成签到 ,获得积分10
25秒前
满意的迎南完成签到 ,获得积分10
26秒前
小熊饼干完成签到,获得积分10
26秒前
26秒前
大方的笑萍完成签到 ,获得积分10
27秒前
Hello应助CKX采纳,获得10
27秒前
29秒前
illion1发布了新的文献求助10
30秒前
与共完成签到 ,获得积分10
32秒前
xuan发布了新的文献求助10
32秒前
CKX完成签到,获得积分10
33秒前
诺诺完成签到 ,获得积分10
33秒前
liujingyi完成签到,获得积分20
33秒前
幸福老六完成签到,获得积分10
34秒前
35秒前
容言发布了新的文献求助10
35秒前
36秒前
36秒前
风趣从露完成签到,获得积分20
36秒前
许三问完成签到 ,获得积分0
39秒前
香菜张完成签到,获得积分10
39秒前
乔苏惠娜完成签到,获得积分10
39秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307193
求助须知:如何正确求助?哪些是违规求助? 2940961
关于积分的说明 8499766
捐赠科研通 2615195
什么是DOI,文献DOI怎么找? 1428732
科研通“疑难数据库(出版商)”最低求助积分说明 663525
邀请新用户注册赠送积分活动 648382