清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Genetic dissection of wheat nitrogen use efficiency related traits

数量性状位点 农学 加倍单倍体 生物 人口 粮食产量 特质 标记辅助选择 基因座(遗传学) 氮气 遗传学 化学 基因 社会学 人口学 有机化学 程序设计语言 计算机科学
作者
Yun Zhao
链接
摘要

Nitrogen is not only an essential element for wheat development, but also a major determinant for wheat yield and protein quality. It is vital to improve wheat nitrogen use efficiency (NUE) as nitrogen is the most important component of all fertilizers that are provided for the pursuit of a higher wheat yield and better protein quality. Wheat NUE is an important quantitative trait that is very complex and easily influenced by the environment and its controlling network is still not clear. In the current study, a wheat doubled haploid (DH) population was used to study the genetic variations of NUE and its controlling mechanism in wheat. Through quantitative genetic locus (QTL) mapping method, a suite of QTLs associated with NUE related traits as well as yield and yield component traits under different nitrogen rates and different environmental conditions were obtained. For yield components, results showed major QTLs for seed number per main spike (SN) were located on 3A and 5A, the SN QTL on 3A was detected in three environments and explained 32.16% of phenotypic variation. QTLs for thousand kernel weight (TKW) were detected on 2A, 2D, 4A, 4B, 5A, 6A and 7D. The most significant TKW QTL was located at 123 cM on 2A, with LOD and PVE of 16.93 and 20.35%, respectively. Major QTL for grain weight (GW) was located on 5A, with LOD and PVE of 4.42 and 13.26%, respectively. Important QTLs related to grain protein content (GPC) were identified on 1B, 2D, 4B and 5A, GPC QTL on 5A was the most significant, with logarithm of odds (LOD) and phenotypic variation explained (PVE) of 11.36 and 17.04%, respectively. Important NUE related QTLs identified in this study were QTL for Straw protein content (SPC) on 3B, QTL for nitrogen Harvest index (NHI) on 1B, 2B, 5A and 6B. QTL for nitrogen utilization efficiency for grain yield (NUtE) on 1B, 3A and 6B. Besides the large numbers of QTLs identified related to each trait investigated in this study, several chromosome regions were identified to be associated with multiple traits and were detected in multiple environments, including a QTL cluster located at 131 cM at 1B, associated with GPC, SPC and NUtE; QTL cluster located at 111-115 cM on 3A associated with TKW, SN and NUtE; QTL cluster located at 153-155 cM on 4B associated with kernel traits and GPC. Compared with other QTLs that were only detected in single environment, these QTL regions deserve more attention. Metabolites profiling of over 1000 metabolites in mature wheat kernels were carried out to facilitate the candidate gene identification for those regions and other important traits. Because of the causal relationships between metabolites and their closely correlated traits, metabolites identified to be colocalized with these genetic regions will assist further narrowing down these regions harbouring the underlying candidate genes. A single gene controlled major QTL for stem diameter that is positively correlated with grain yield was located on Chromosome 3BL. A list of candidate genes was generated from search of wheat reference map using the flanking markers of this QTL. TaCOMT gene was suggested as one of the candidate genes for stem diameter, further confirmation of the genetic function work is needed. Many modern commercial wheat cultivars contain 1B.1R translocation due to its high yield and disease resistance characteristics despite its negative impact on breadmaking quality caused by the Sec-1 locus on rye 1R chromosome. Wheat gliadins are important parts of wheat storage proteins that determine the extensibility of wheat gluten, which is crucial for breadmaking. In the current study, the gliadin constituent dynamics across the population were studied via reverse phase high-performance liquid chromatography (RP-HPLC) and size exclusion high-performance liquid chromatography (SE-HPLC) to reveal the 1B.1R impacts on seed gliadin compositions. The two parental lines differ in 1B.1R genotype and with High molecular weight glutenin subunits (HMW-GS) composition, ie., 2*, 17+18, 2+12, vs 2*, 7+9, 5+10. Results from SE-HPLC indicated that lines with 1B.1R translocation showed significantly lower SDS-unextractable polymeric protein (UPP) percentage, Ratio of polymeric proteins to monomeric proteins (P/M) and Ratio of glutenin proteins to gliadin proteins (Glu/Gli). However, this undesirable effect was significantly alleviated by HMW-GS 17+18 in one growing environments. The population RP-HPLC profiles could be clearly distinguished into two groups, with lines containing 1B.1R showed more individual proteins originated from the rye translocation. To elucidate the genetic mechanism behind the chromatograph pattern, QTL-mapping analysis was carried out to detect the underlying genetic factors controlling the gliadin components and the results indicated that some gliadin fractions were controlled by gene loci other than the Sec-1 locus. This study provided new insights into maintaining a balanced grain yield and quality through utilising the 1B.1R translocation line in wheat breeding.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自由飞翔完成签到 ,获得积分10
2秒前
Shirley发布了新的文献求助10
8秒前
若眠完成签到 ,获得积分10
18秒前
小蘑菇应助zhangxr采纳,获得10
25秒前
开心每一天完成签到 ,获得积分10
1分钟前
Shrimp完成签到 ,获得积分10
1分钟前
执着晓亦完成签到 ,获得积分10
1分钟前
在水一方应助fox采纳,获得10
1分钟前
缥缈映安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
fox发布了新的文献求助10
2分钟前
zhzh0618完成签到,获得积分10
2分钟前
糖宝完成签到 ,获得积分10
3分钟前
夏林完成签到,获得积分10
3分钟前
未完成完成签到,获得积分10
3分钟前
研友_850aeZ完成签到,获得积分10
4分钟前
柒月完成签到,获得积分10
4分钟前
Gary完成签到 ,获得积分10
4分钟前
3080完成签到 ,获得积分10
4分钟前
大轩完成签到 ,获得积分10
4分钟前
5分钟前
madison完成签到 ,获得积分10
5分钟前
居居侠完成签到 ,获得积分10
5分钟前
Tong完成签到,获得积分0
5分钟前
6分钟前
墨言无殇完成签到 ,获得积分10
6分钟前
CUN完成签到,获得积分10
7分钟前
鹏gg完成签到 ,获得积分10
7分钟前
清秀的怀蕊完成签到 ,获得积分10
7分钟前
7分钟前
zhangxr发布了新的文献求助10
7分钟前
wanci应助zhangxr采纳,获得10
8分钟前
无悔完成签到 ,获得积分10
8分钟前
CipherSage应助Jack Wong采纳,获得10
8分钟前
嬗变的天秤完成签到,获得积分10
8分钟前
9分钟前
Jack Wong发布了新的文献求助10
9分钟前
kyokyoro完成签到,获得积分10
9分钟前
Jack Wong完成签到,获得积分10
10分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162346
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899776
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142