Few-Shot Hyperspectral Image Classification With Unknown Classes Using Multitask Deep Learning

高光谱成像 人工智能 计算机科学 背景(考古学) 模式识别(心理学) 上下文图像分类 图像(数学) 机器学习 地理 考古
作者
Shengjie Liu,Qian Shi,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (6): 5085-5102 被引量:122
标识
DOI:10.1109/tgrs.2020.3018879
摘要

Current hyperspectral image classification assumes that a predefined classification system is closed and complete, and there are no unknown or novel classes in the unseen data. However, this assumption may be too strict for the real world. Often, novel classes are overlooked when the classification system is constructed. The closed nature forces a model to assign a label given a new sample and may lead to overestimation of known land covers (e.g., crop area). To tackle this issue, we propose a multitask deep learning method that simultaneously conducts classification and reconstruction in the open world (named MDL4OW) where unknown classes may exist. The reconstructed data are compared with the original data; those failing to be reconstructed are considered unknown based on the assumption that they are not well represented in the latent features due to the lack of labels. A threshold needs to be defined to separate the unknown and known classes; we propose two strategies based on the extreme value theory for few- and many-shot scenarios. The proposed method was tested on real-world hyperspectral images; state-of-the-art results were achieved, e.g., improving the overall accuracy by 4.94% for the Salinas data. By considering the existence of unknown classes in the open world, our method achieved more accurate hyperspectral image classification, especially under the few-shot context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助yuM采纳,获得10
刚刚
刚刚
1秒前
小王快毕业完成签到,获得积分10
1秒前
Marco21发布了新的文献求助10
2秒前
共享精神应助时生111采纳,获得10
2秒前
3秒前
ssw完成签到,获得积分10
4秒前
整齐的泥猴桃完成签到,获得积分10
5秒前
绿麦盲区完成签到 ,获得积分10
5秒前
6秒前
7秒前
8秒前
等风的人完成签到,获得积分10
9秒前
郝君颖完成签到 ,获得积分10
9秒前
香精完成签到,获得积分10
9秒前
善学以致用应助123采纳,获得10
10秒前
simon发布了新的文献求助10
10秒前
11秒前
ZZ关注了科研通微信公众号
11秒前
Jasper应助豪哥大大采纳,获得10
11秒前
何仲秋冲冲冲完成签到,获得积分10
12秒前
张张发布了新的文献求助10
13秒前
13秒前
时生111发布了新的文献求助10
13秒前
童话发布了新的文献求助10
15秒前
mm驳回了ding应助
15秒前
12138发布了新的文献求助30
16秒前
哇啦啦完成签到,获得积分20
17秒前
优秀老师完成签到,获得积分20
17秒前
17秒前
Zz完成签到 ,获得积分10
18秒前
19秒前
21秒前
传奇3应助稞小弟采纳,获得50
22秒前
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Akim应助科研通管家采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151736
求助须知:如何正确求助?哪些是违规求助? 2803153
关于积分的说明 7852024
捐赠科研通 2460525
什么是DOI,文献DOI怎么找? 1309844
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760