Few-Shot Hyperspectral Image Classification With Unknown Classes Using Multitask Deep Learning

高光谱成像 人工智能 计算机科学 背景(考古学) 模式识别(心理学) 上下文图像分类 图像(数学) 机器学习 地理 考古
作者
Shengjie Liu,Qian Shi,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (6): 5085-5102 被引量:122
标识
DOI:10.1109/tgrs.2020.3018879
摘要

Current hyperspectral image classification assumes that a predefined classification system is closed and complete, and there are no unknown or novel classes in the unseen data. However, this assumption may be too strict for the real world. Often, novel classes are overlooked when the classification system is constructed. The closed nature forces a model to assign a label given a new sample and may lead to overestimation of known land covers (e.g., crop area). To tackle this issue, we propose a multitask deep learning method that simultaneously conducts classification and reconstruction in the open world (named MDL4OW) where unknown classes may exist. The reconstructed data are compared with the original data; those failing to be reconstructed are considered unknown based on the assumption that they are not well represented in the latent features due to the lack of labels. A threshold needs to be defined to separate the unknown and known classes; we propose two strategies based on the extreme value theory for few- and many-shot scenarios. The proposed method was tested on real-world hyperspectral images; state-of-the-art results were achieved, e.g., improving the overall accuracy by 4.94% for the Salinas data. By considering the existence of unknown classes in the open world, our method achieved more accurate hyperspectral image classification, especially under the few-shot context.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
klicking发布了新的文献求助10
刚刚
感谢有你完成签到 ,获得积分10
刚刚
温暖的盼山应助velen采纳,获得10
4秒前
雪白丹亦完成签到,获得积分20
4秒前
4秒前
5秒前
Away完成签到,获得积分10
6秒前
8秒前
雪白丹亦发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
12秒前
oo发布了新的文献求助10
12秒前
Angel完成签到,获得积分20
15秒前
追寻笑寒发布了新的文献求助10
15秒前
zino发布了新的文献求助10
16秒前
sevenvictory应助cat_head采纳,获得10
17秒前
我是老大应助古月采纳,获得30
18秒前
18秒前
18秒前
蚌埠住不了完成签到,获得积分10
18秒前
21秒前
Away发布了新的文献求助10
22秒前
谷安发布了新的文献求助10
23秒前
24秒前
彳亍1117应助聂鸿采纳,获得10
25秒前
elephant51发布了新的文献求助10
25秒前
科研通AI2S应助研友_Z7gWlZ采纳,获得10
26秒前
28秒前
Angel发布了新的文献求助10
28秒前
28秒前
yeyuan1017发布了新的文献求助10
28秒前
30秒前
31秒前
yuhang发布了新的文献求助10
31秒前
31秒前
33秒前
烂漫的绝悟完成签到 ,获得积分10
33秒前
白桃乌龙发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432