化学
电化学发光
半胱氨酸
碱性磷酸酶
检出限
纳米团簇
铜
线性范围
鲁米诺
原位
组合化学
化学发光
无机化学
纳米颗粒
核化学
化学工程
生物化学
色谱法
酶
有机化学
工程类
作者
Mei-Chen Pan,Yan-Mei Lei,Yaqin Chai,Ruo Yuan,Ying Zhuo
出处
期刊:Analytical Chemistry
[American Chemical Society]
日期:2020-09-07
卷期号:92 (19): 13581-13587
被引量:37
标识
DOI:10.1021/acs.analchem.0c03312
摘要
Copper nanoclusters (Cu NCs) as emerging luminescent metal NCs are gaining increasing attention owing to the comparatively low cost and high abundance of the Cu element in nature. However, it remains challenging to manipulate the optical properties of Cu NCs. Unlike most dispersed Cu NCs, whose luminescence efficiency was restricted by nonexcited relaxation, the Cu NCs confined in a porous poly-l-cysteine (poly-l-Cys) film were generated controllably with enhanced electrochemiluminescence (ECL) by in situ electrochemical reduction. Specifically, poly-l-Cys provided a porous structure to regulate the generation of Cu NCs within its holes, which not only increased the restriction on the intramolecular vibration and rotation of the ligands but also expedited the electron transfer near the electrode surface, reflecting in an enhancement of the ECL signal and efficiency. As an application of the confined Cu NCs, an ECL biosensor with high performance was constructed skillfully for highly sensitive detection of alkaline phosphatase (ALP), which adopted Cu NCs as the ECL luminophore and poly-l-Cys as a coreaction accelerator in a novel ECL ternary system (Cu NCs/S2O82-/poly-l-Cys). Furthermore, an ingenious target amplification based on the combination of a DNA walker and click chemistry was developed to convert ALP to DNA strands efficiently, achieving great improvement in the recognition efficiency. As a result, the biosensor had a low detection limit (9.5 × 10-7 U·L-1) and a wide linear range (10-8-10-2 U·L-1) for ALP detection, which showed great promise for the detection of non-nucleic acid targets and the diagnosis of diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI