Heterogeneous data fusion for predicting mild cognitive impairment conversion

判别式 神经影像学 人工智能 计算机科学 离群值 回归 认知障碍 正电子发射断层摄影术 磁共振成像 模式识别(心理学) 数学 医学 疾病 心理学 统计 内科学 核医学 神经科学 放射科
作者
Heng Tao Shen,Xiaofeng Zhu,Zheng Zhang,Shuihua Wang‎,Yi Chen,Xing Xu,Jie Shao
出处
期刊:Information Fusion [Elsevier]
卷期号:66: 54-63 被引量:68
标识
DOI:10.1016/j.inffus.2020.08.023
摘要

In the clinical study of Alzheimer’s Disease (AD) with neuroimaging data, it is challenging to identify the progressive Mild Cognitive Impairment (pMCI) subjects from the stableMCI (sMCI) subjects (i.e., the pMCI/sMCI classification) in an individual level because of small inter-group differences between two groups (i.e., pMCIs and sMCIs) as well as high intra-group variations within each group. Moreover, there are a very limited number of subjects available, which cannot guarantee to find informative and discriminative patterns for achieving high diagnostic accuracy. In this paper, we propose a novel sparse regression method to fuse the auxiliary data into the predictor data for the pMCI/sMCI classification, where the predictor data is structural Magnetic Resonance Imaging (MRI) information of both pMCI and sMCI subjects and the auxiliary data includes the ages of the subjects, the Positron Emission Tomography (PET) information of the predictor data, and the structural MRI information of AD and Normal Controls (NC). Specifically, we incorporate the auxiliary data and the predictor data into a unified framework to jointly achieve the following objectives: i) jointly selecting informative features from both the auxiliary data and the predictor data; ii) robust to outliers from both the auxiliary data and the predictor data; and iii) reducing the aging effect due to the possible cause of brain atrophy induced by both the normal aging and the disease progression. As a result, our proposed method jointly selects the useful features from the auxiliary data and the predictor data by taking into account the influence of outliers and the age of the two kinds of data, i.e., the pMCI and sMCI subjects as well as the AD and NC subjects. We further employ the linear Support Vector Machine (SVM) with the selected features of the predictor data to conduct the pMCI/sMCI classification. Experimental results on the public data of Alzheimer’s Disease Neuroimaging Initiative (ADNI) show the proposed method achieved the best classification performance, compared to the best comparison method, in terms of four evaluation metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
Onlyxxl发布了新的文献求助10
2秒前
斯文败类应助GoQao采纳,获得10
3秒前
cocolu应助缥缈的缘分采纳,获得20
4秒前
三块石头发布了新的文献求助10
4秒前
无花果应助sisyphus_yy采纳,获得10
4秒前
bujiachong发布了新的文献求助10
4秒前
syk发布了新的文献求助10
4秒前
5秒前
6秒前
SciGPT应助饱满芷卉采纳,获得30
7秒前
和路雪完成签到,获得积分10
7秒前
8秒前
wuminga0000完成签到,获得积分20
9秒前
10秒前
皮谷雪发布了新的文献求助10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得10
11秒前
Leon应助科研通管家采纳,获得30
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
小太阳发布了新的文献求助10
11秒前
11秒前
wanci应助科研通管家采纳,获得10
11秒前
syk完成签到,获得积分10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
毛豆应助科研通管家采纳,获得10
11秒前
丘比特应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
黑芝麻完成签到,获得积分10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
ETUDE DE LA TENSION SUPERFICIELLE ET DE LA DENSITE DU SYSTEME ETAIN-GALLIUM 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3439033
求助须知:如何正确求助?哪些是违规求助? 3035827
关于积分的说明 8960646
捐赠科研通 2723755
什么是DOI,文献DOI怎么找? 1494244
科研通“疑难数据库(出版商)”最低求助积分说明 690662
邀请新用户注册赠送积分活动 687084