Computer Vision for Recognition of Materials and Vessels in Chemistry Lab Settings and the Vector-LabPics Data Set

人工智能 计算机科学 集合(抽象数据类型) 卷积神经网络 任务(项目管理) 数据集 分割 支持向量机 模式识别(心理学) 机器学习 计算机视觉 工程类 系统工程 程序设计语言
作者
Sagi Eppel,Haoping Xu,Mor Bismuth,Alán Aspuru–Guzik
出处
期刊:ACS central science [American Chemical Society]
卷期号:6 (10): 1743-1752 被引量:41
标识
DOI:10.1021/acscentsci.0c00460
摘要

This work presents a machine learning approach for the computer vision-based recognition of materials inside vessels in the chemistry lab and other settings. In addition, we release a data set associated with the training of the model for further model development. The task to learn is finding the region, boundaries, and category for each material phase and vessel in an image. Handling materials inside mostly transparent containers is the main activity performed by human and robotic chemists in the laboratory. Visual recognition of vessels and their contents is essential for performing this task. Modern machine-vision methods learn recognition tasks by using data sets containing a large number of annotated images. This work presents the Vector-LabPics data set, which consists of 2187 images of materials within mostly transparent vessels in a chemistry lab and other general settings. The images are annotated for both the vessels and the individual material phases inside them, and each instance is assigned one or more classes (liquid, solid, foam, suspension, powder, ...). The fill level, labels, corks, and parts of the vessel are also annotated. Several convolutional nets for semantic and instance segmentation were trained on this data set. The trained neural networks achieved good accuracy in detecting and segmenting vessels and material phases, and in classifying liquids and solids, but relatively low accuracy in segmenting multiphase systems such as phase-separating liquids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭于晏应助出门见喜采纳,获得10
2秒前
ruaruaburua完成签到,获得积分10
2秒前
123关注了科研通微信公众号
3秒前
13223456发布了新的文献求助10
3秒前
Cactus应助王富贵采纳,获得10
5秒前
诚心代芙完成签到 ,获得积分10
5秒前
6秒前
6秒前
Aimee完成签到 ,获得积分10
7秒前
阔达以山完成签到,获得积分10
7秒前
无心的星月应助mmol采纳,获得10
7秒前
彩色愚志发布了新的文献求助10
8秒前
baihanjunluo应助儒雅曼云采纳,获得10
8秒前
8秒前
英俊的铭应助ling22采纳,获得10
9秒前
9秒前
11秒前
强健的千萍完成签到 ,获得积分20
12秒前
B站萧亚轩发布了新的文献求助10
12秒前
wen完成签到,获得积分10
13秒前
13秒前
123完成签到,获得积分10
13秒前
我是老大应助Blank采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
汉堡包应助t忒对采纳,获得30
17秒前
乐乐应助方班术采纳,获得10
17秒前
想养一只猫完成签到,获得积分10
19秒前
19秒前
19秒前
小熊猪应助高兴的沛山采纳,获得60
20秒前
点点丶逗逗发布了新的文献求助100
20秒前
20秒前
21秒前
高贵的斑马完成签到,获得积分20
21秒前
21秒前
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738049
求助须知:如何正确求助?哪些是违规求助? 3281565
关于积分的说明 10026096
捐赠科研通 2998320
什么是DOI,文献DOI怎么找? 1645228
邀请新用户注册赠送积分活动 782682
科研通“疑难数据库(出版商)”最低求助积分说明 749882