卷积神经网络
周围神经病变
人工智能
计算机科学
特征提取
试验装置
特征选择
基本事实
降维
模式识别(心理学)
支持向量机
随机森林
分类器(UML)
计算机视觉
机器学习
医学
糖尿病
内分泌学
作者
Jeremy Benson,Trilce Estrada,Mark R. Burge,Peter Solíz
标识
DOI:10.1109/embc44109.2020.9175982
摘要
In this work, we demonstrate a novel approach to assessing the risk of Diabetic Peripheral Neuropathy (DPN) using only the retinal images of the patients. Our methodology consists of convolutional neural network feature extraction, dimensionality reduction and feature selection with random projections, combination of image features to case-level representations, and the training and testing of a support vector machine classifier. Using clinical diagnosis as ground truth for DPN, we achieve an overall accuracy of 89% on a held-out test set, with sensitivity reaching 78% and specificity reaching 95%.
科研通智能强力驱动
Strongly Powered by AbleSci AI