过电位
碳纤维
材料科学
热解
氧还原
氧还原反应
金属
析氧
兴奋剂
催化作用
化学工程
纳米技术
电极
化学
冶金
电化学
光电子学
物理化学
复合数
有机化学
工程类
复合材料
作者
Wenzheng Cheng,Pengfei Yuan,Zirui Lv,Yingying Guo,Yueyang Qiao,Xiaoyi Xue,Xin Liu,Wenlong Bai,Kai‐Xue Wang,Qun Xu,Jianan Zhang
标识
DOI:10.1016/j.apcatb.2019.118198
摘要
Experimental and computational studies show that topological defect and FeN4 site in carbon materials would deliver high performances for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Either defect or FeN4 site attracts numerous discussion, however, the synergetic effect between them is hardly explored. Herein, we design a facial strategy to synthesize N,P-doped defective carbon nanosheets first (N,P-DC), then cover doped sites with well-define metal-N4 macrocyclic molecules ([email protected],P-DC) through non-pyrolysis process. The defective carbon boosts the high spin state of Fe center, thus brings superior ORR performances with the half-wave potential of 0.903 V and excellent cycling-life stability in alkaline media. Theoretical calculations show that the overpotential of [email protected],P-DC for ORR is 0.52 V, much lower than 0.80 V (N,P-DC). Interestingly, the OER activity is simultaneously improved. This [email protected] carbon hybrid opens a door to develop electrocatalysts combining atomically metal-N4 sites with topological defect towards diverse energy conversion type.
科研通智能强力驱动
Strongly Powered by AbleSci AI