Ripple effect modelling of supplier disruption: integrated Markov chain and dynamic Bayesian network approach

动态贝叶斯网络 涟漪 公制(单位) 马尔可夫链 计算机科学 脆弱性(计算) 马尔科夫蒙特卡洛 意外事故 贝叶斯网络 运筹学 计量经济学 可靠性工程 贝叶斯概率 风险分析(工程) 运营管理 工程类 业务 机器学习 经济 人工智能 计算机安全 语言学 哲学 电压 电气工程
作者
Seyedmohsen Hosseini,Dmitry Ivanov,Alexandre Dolgui
出处
期刊:International Journal of Production Research [Informa]
卷期号:58 (11): 3284-3303 被引量:168
标识
DOI:10.1080/00207543.2019.1661538
摘要

The ripple effect can occur when a supplier base disruption cannot be localised and consequently propagates downstream the supply chain (SC), adversely affecting performance. While stress-testing of SC designs and assessment of their vulnerability to disruptions in a single-echelon-single-event setting is desirable and indeed critical for some firms, modelling the ripple effect impact in multi-echelon-correlated-events systems is becoming increasingly important. Notably, ripple effect assessment in multi-stage SCs is particularly challenged by the need to consider both vulnerability and recoverability capabilities at individual firms in the network. We construct a new model based on integration of Discrete-Time Markov Chain (DTMC) and a Dynamic Bayesian Network (DBN) to quantify the ripple effect. We use the DTMC to model the recovery and vulnerability of suppliers. The proposed DTMC model is then equalised with a DBN model in order to simulate the propagation behaviour of supplier disruption in the SC. Finally, we propose a metric that quantifies the ripple effect of supplier disruption on manufacturers in terms of total expected utility and service level. This ripple effect metric is applied to two case studies and analysed. The findings suggest that our model can be of value in uncovering latent high-risk paths in the SC, analysing the performance impact of both a disruption and its propagation, and prioritising contingency and recovery policies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美人小姨完成签到,获得积分20
1秒前
1秒前
1秒前
Xiaowen发布了新的文献求助10
1秒前
小花爷完成签到,获得积分10
1秒前
11111发布了新的文献求助10
1秒前
2秒前
冬去春来完成签到 ,获得积分10
3秒前
娟儿完成签到,获得积分10
4秒前
派大星的海洋裤完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
6秒前
明理的惜蕊应助11111采纳,获得10
7秒前
7秒前
捷克发布了新的文献求助10
7秒前
七四发布了新的文献求助10
8秒前
嘉心糖应助王蓉采纳,获得20
8秒前
keke完成签到,获得积分10
10秒前
ohh完成签到,获得积分10
10秒前
李惠贤发布了新的文献求助10
11秒前
璐瑶完成签到,获得积分10
11秒前
11秒前
11秒前
可爱的函函应助orange9采纳,获得10
11秒前
11秒前
白小白完成签到,获得积分10
12秒前
Gong发布了新的文献求助200
12秒前
尹山蝶发布了新的文献求助200
13秒前
会飞的猪完成签到,获得积分10
13秒前
tang发布了新的文献求助10
14秒前
深情安青应助倒数21采纳,获得10
14秒前
15秒前
琉璃完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
16秒前
包容乌发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305528
求助须知:如何正确求助?哪些是违规求助? 2939246
关于积分的说明 8492531
捐赠科研通 2613686
什么是DOI,文献DOI怎么找? 1427569
科研通“疑难数据库(出版商)”最低求助积分说明 663114
邀请新用户注册赠送积分活动 647864