Deep Neural Network for Early Image Diagnosis of Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis

中毒性表皮坏死松解 医学 皮肤病科
作者
Atsushi Fujimoto,Yuki Iwai,Takashi Ishikawa,Satoru Shinkuma,Kosuke Shido,Kenshi Yamasaki,Yasuhiro Fujisawa,Manabu Fujimoto,Shogo Muramatsu,Riichiro Abe
出处
期刊:The Journal of Allergy and Clinical Immunology: In Practice [Elsevier BV]
卷期号:10 (1): 277-283 被引量:10
标识
DOI:10.1016/j.jaip.2021.09.014
摘要

Background Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. Objective To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN). Methods We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists. Results The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists. Conclusions We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images. Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction (cADR). Distinguishing SJS/TEN from nonsevere cADRs is difficult, especially in the early stages of the disease. To overcome this limitation, we developed a computer-aided diagnosis system for the early diagnosis of SJS/TEN, powered by a deep convolutional neural network (DCNN). We trained a DCNN using a dataset of 26,661 individual lesion images obtained from 123 patients with a diagnosis of SJS/TEN or nonsevere cADRs. The DCNN's accuracy of classification was compared with that of 10 board-certified dermatologists and 24 trainee dermatologists. The DCNN achieved 84.6% sensitivity (95% confidence interval [CI], 80.6-88.6), whereas the sensitivities of the board-certified dermatologists and trainee dermatologists were 31.3 % (95% CI, 20.9-41.8; P < .0001) and 27.8% (95% CI, 22.6-32.5; P < .0001), respectively. The negative predictive value was 94.6% (95% CI, 93.2-96.0) for the DCNN, 68.1% (95% CI, 66.1-70.0; P < .0001) for the board-certified dermatologists, and 67.4% (95% CI, 66.1-68.7; P < .0001) for the trainee dermatologists. The area under the receiver operating characteristic curve of the DCNN for a SJS/TEN diagnosis was 0.873, which was significantly higher than that for all board-certified dermatologists and trainee dermatologists. We developed a DCNN to classify SJS/TEN and nonsevere cADRs based on individual lesion images of erythema. The DCNN performed significantly better than did dermatologists in classifying SJS/TEN from skin images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lxh完成签到 ,获得积分10
1秒前
香蕉觅云应助布溜采纳,获得10
1秒前
2秒前
herdwind完成签到,获得积分10
2秒前
研友_VZG7GZ应助六天采纳,获得10
2秒前
潇洒的青完成签到,获得积分10
3秒前
Tom完成签到,获得积分10
3秒前
4秒前
feng发布了新的文献求助30
4秒前
4秒前
超帅沂完成签到,获得积分20
5秒前
dongli6536发布了新的文献求助10
6秒前
6秒前
听话的幼蓉完成签到,获得积分10
6秒前
6秒前
爆米花应助庸俗采纳,获得10
6秒前
浮熙完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
7秒前
冬凌草给嘟嘟喂嘟嘟的求助进行了留言
8秒前
Rubby应助刘城采纳,获得10
9秒前
南至发布了新的文献求助10
9秒前
坦率的傲芙完成签到,获得积分10
9秒前
呆萌的源智完成签到,获得积分10
9秒前
土土发布了新的文献求助10
10秒前
10秒前
10秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
10秒前
言无间完成签到,获得积分10
10秒前
ding应助ziyuexu采纳,获得10
10秒前
东方不败完成签到 ,获得积分10
11秒前
11秒前
孤独的珩完成签到,获得积分10
11秒前
12秒前
泽灵发布了新的文献求助10
12秒前
毛阳发布了新的文献求助10
12秒前
zrx15986完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582