摘要
PDF HTML阅读 XML下载 导出引用 引用提醒 生态基因组学研究进展 DOI: 10.5846/stxb201108041143 作者: 作者单位: 上海师范大学生命与环境科学学院和浙江省台州学院生态研究所,台州学院生态研究所 临海,台州学院生态研究所 临海 作者简介: 通讯作者: 中图分类号: 基金项目: 国家自然科学基金(30800133);中国博士后基金(20080440557);浙江省自然科学基金(Y5110227) Advances in ecological genomics Author: Affiliation: College of Life Science and Environments, Shanghai Normal Univresity and Institute of Ecology, Taizhou University,Institute of Ecology, Taizhou University,Institute of Ecology, Taizhou University Fund Project: 摘要 | 图/表 | 访问统计 | 参考文献 | 相似文献 | 引证文献 | 资源附件 | 文章评论 摘要:生态基因组学是一个整合生态学、分子遗传学和进化基因组学的新兴交叉学科。生态基因组学将基因组学的研究手段和方法引入生态学领域,通过将群体基因组学、转录组学、蛋白质组学等手段与方法将个体、种群及群落、生态系统不同层次的生态学相互作用整合起来,确定在生态学响应及相互作用中具有重要意义的关键的基因和遗传途径,阐明这些基因及遗传途径变异的程度及其生态和进化后果的特征,从基因水平探索有机体响应天然环境(包括生物与非生物的环境因子)的遗传学机制。生态基因组学的研究对象可以分为模式生物与非模式生物两大类。拟南芥、酿酒酵母等模式生物在生态基因组学领域发挥了重要作用。随着越来越多基因组学技术的开发与完善,越来越多的非模式生物生态基因组学的研究将为生态学的发展提供重要的理论与实践依据。生态基因组学最核心的方法包括寻找序列变异、研究基因差异表达和分析基因功能等方法。生态基因组学已广泛渗透到生态学的相关领域中,将会在生物对环境的响应、物种间的相互作用、进化生态学、全球变化生态学、入侵生态学、群落生态学等研究领域发挥更大的作用。 Abstract:Natural environments impose a multitude of biotic and abiotic challenges to organisms, resulting in both short-term ecological and long-term evolutionary responses. A new interdisciplinary subject, called ecological genomics, integrates ecology, molecular genetics and evolutionary genomics to understand the genetic mechanisms underlying these responses. Ecological genomics introduces the methodology of genomics, such as population genomic, transcriptomic and proteomic techniques, into the study of ecology at individual-, population-, community- and ecosystem-levels. The aim of ecological genomics is to elucidate the genetic mechanisms underlying the responses of organisms to natural environments (including biotic and abiotic environments). This is done by determining which key genes or genetic pathways play important roles in ecological responses and interactions and by exploring the degree of genetic variation in these genes, pathways, and the ecological and evolutionary outcomes. The subjects of ecological genomics are divided into two categories: model species and non-model species. The traditional model species, such as Arabidopsis thaliana, Saccharomyces cerevisiae, Escherichia coli, Bacillus subtilis and Caenorhabditis elegans, have well-characterized genetic backgrounds and abundant genetic resources and have played important roles in the development of the field. Non-model systems can serve as important theoretical and practical bases for ecology; attempts to understand variation and molecular mechanisms in natural systems have motivated a shift from laboratory model systems to non-model systems in diverse environments. With the development of genomics methods, an increasing number of non-model species are being studied in ecological genomics. The core techniques used in ecological genomics include methods to detect sequence variation, to measure differential expression of genes, and to link genes to their functions. Novel genomics methods are regularly introduced and applied to the study of ecological genomics. Ecological genomics can be widely applied to ecological questions. It can help to understand the molecular mechanistic basis for responses to abiotic and biotic environments; to explore the genetic and evolutionary bases of species adaptation to abiotic and biotic factors, of phenotypic variation and of ecological speciation; to elucidate the genetic mechanisms underlying how species distribute themselves in space and through geological time, how organisms adapt to global environmental change, and how exotic species become invasive; and to clarify how natural communities are shaped and maintained. Ecological genomics will facilitate the understanding of biotic interactions, evolutionary ecology, global change ecology, invasion ecology, community ecology, and other ecological subfields. Here, we review recent advances in the study of ecological genomics. 参考文献 相似文献 引证文献