The use of a multilayer piezoelectric cantilever beam for vibration-based energy harvesting applications has been investigated as an effective technique to increase the harvested electrical power. It has been shown that the multilayered energy harvester performance is very sensitive to the number of layers and their electrical connection due to impedance variations. The objective of this work is to suggest a comprehensive mathematical model of multilayered unimorph piezoelectric energy harvester allowing analytical solution for the harvested voltage and electrical power. The model is used to deeply investigate the influence of different parameters on the harvested power. A distributed-parameter model of the harvester using the Euler–Bernoulli beam theory and Hamilton's principle is derived. Gauss's law is used to derive the electrical equations for parallel and series connections. A closed-form solution is proposed based on the Galerkin procedure and the obtained results are validated with a finite element 3D model. A parametric study is performed to ascertain the influence of the load resistance, the thickness ratio, the number of piezoelectric layers on the tip displacement and the electrical harvested power. It is shown that this model can be easily used to adjust the geometrical and electrical parameters of the energy harvester in order to improve the system's performances. In addition, it is proven that if one of the system's parameter is not correctly tuned, the harvested power can decrease by several orders of magnitude.