[Study on rapid identification of medicinal plants of Paris polyphylla from different origin areas by NIR spectroscopy].

马氏距离 主成分分析 数学 标准差 均方误差 校准 统计 标准误差 航程(航空) 二阶导数 衍生工具(金融) 决定系数 近红外光谱 分析化学(期刊) 化学 色谱法 物理 材料科学 数学分析 量子力学 金融经济学 复合材料 经济
作者
Yanli Zhao,Ji Zhang,Yuan Tianjun,Tao Shen,Ying Hou,Yang Shihua,Wei Li,Yuanzhong Wang,Hang Jin
出处
期刊:PubMed 卷期号:34 (7): 1831-5 被引量:9
链接
标识
摘要

Based on near infrared spectroscopy, seventy samples of wild medicinal plants of paris polyphylla from Guizhou, Guangxi and Yunnan Provinces were collected to identify their geographical origins. Multiplication signal correction (MSC), standard normal variate (SNV), first derivative (FD), second derivative (SD), savitzky-Golay filter (SG), and Norris derivative filter (ND) were conducted to optimize the original spectra of fifty samples of training set. The results showed that the method MSC combined with SD and ND presented the best results of spectra pretreatment. According to spectrum standard deviation, spectrum range (7 450-4 050 cm(-1)) was chosen and principal component analysis-mahalanobis distance (PCA-MD) method was used to build the model. Its first three principal components, i. e. cumulative contribution, determination coefficient (R2), root-mean-square error of calibration (RMSEC) and root-mean-square error of prediction (RMSEP) were 89.44%, 97.58%, 0.179 6 and 0.266 4, respectively, and the prediction accuracy is 90%. Furthermore, according to variable importance plot (VIP), spectrum range (7 135.33-4 007.35 cm(-1)) was chosen and partial least square discrimination analysis (PLS-DA) was applied to establish the model. Its first three principal components cumulative contribution, R2, RMSEC and RMSEP were 89.28%, 95.88%, 0.234 8 and 0.348 2, respectively, and the prediction accuracy is 100%. Comparing the two methods, we found that spectrum range chosen by VIP and model built by PLS-DA could provide greater accuracy in identifying paris polyphylla from different origin areas. The method supplied foundation for authenticity and quality evaluation of traditional Chinese medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路航发布了新的文献求助10
刚刚
太叔若南完成签到 ,获得积分10
刚刚
1秒前
周周发布了新的文献求助10
2秒前
重要刺猬发布了新的文献求助10
3秒前
Lucas应助sanlunainiu采纳,获得50
3秒前
柍踏发布了新的文献求助100
3秒前
aeson发布了新的文献求助10
4秒前
4秒前
李爱国应助无奈咖啡豆采纳,获得10
6秒前
木子CC关注了科研通微信公众号
6秒前
纸柒发布了新的文献求助10
6秒前
7秒前
HH完成签到,获得积分10
8秒前
9秒前
李木头发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
CipherSage应助福瑞灯采纳,获得10
10秒前
Akim应助福瑞灯采纳,获得10
10秒前
传奇3应助福瑞灯采纳,获得10
10秒前
SciGPT应助福瑞灯采纳,获得10
10秒前
11秒前
ding应助福瑞灯采纳,获得10
11秒前
小蘑菇应助福瑞灯采纳,获得10
11秒前
共享精神应助福瑞灯采纳,获得10
11秒前
科研通AI6.1应助ling采纳,获得10
11秒前
12秒前
14秒前
北沐完成签到,获得积分10
15秒前
15秒前
默然的歌完成签到 ,获得积分10
16秒前
CodeCraft应助科研go采纳,获得20
16秒前
知了发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
zzzhhh发布了新的文献求助10
21秒前
顾矜应助马茹采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787048
求助须知:如何正确求助?哪些是违规求助? 5697004
关于积分的说明 15471171
捐赠科研通 4915690
什么是DOI,文献DOI怎么找? 2645870
邀请新用户注册赠送积分活动 1593553
关于科研通互助平台的介绍 1547896