[Study on rapid identification of medicinal plants of Paris polyphylla from different origin areas by NIR spectroscopy].

马氏距离 主成分分析 数学 标准差 均方误差 校准 统计 标准误差 航程(航空) 二阶导数 衍生工具(金融) 决定系数 近红外光谱 分析化学(期刊) 化学 色谱法 物理 材料科学 数学分析 量子力学 金融经济学 经济 复合材料
作者
Yanli Zhao,Ji Zhang,Yuan Tianjun,Tao Shen,Ying Hou,Yang Shihua,Wei Li,Yuanzhong Wang,Hang Jin
出处
期刊:PubMed 卷期号:34 (7): 1831-5 被引量:9
链接
标识
摘要

Based on near infrared spectroscopy, seventy samples of wild medicinal plants of paris polyphylla from Guizhou, Guangxi and Yunnan Provinces were collected to identify their geographical origins. Multiplication signal correction (MSC), standard normal variate (SNV), first derivative (FD), second derivative (SD), savitzky-Golay filter (SG), and Norris derivative filter (ND) were conducted to optimize the original spectra of fifty samples of training set. The results showed that the method MSC combined with SD and ND presented the best results of spectra pretreatment. According to spectrum standard deviation, spectrum range (7 450-4 050 cm(-1)) was chosen and principal component analysis-mahalanobis distance (PCA-MD) method was used to build the model. Its first three principal components, i. e. cumulative contribution, determination coefficient (R2), root-mean-square error of calibration (RMSEC) and root-mean-square error of prediction (RMSEP) were 89.44%, 97.58%, 0.179 6 and 0.266 4, respectively, and the prediction accuracy is 90%. Furthermore, according to variable importance plot (VIP), spectrum range (7 135.33-4 007.35 cm(-1)) was chosen and partial least square discrimination analysis (PLS-DA) was applied to establish the model. Its first three principal components cumulative contribution, R2, RMSEC and RMSEP were 89.28%, 95.88%, 0.234 8 and 0.348 2, respectively, and the prediction accuracy is 100%. Comparing the two methods, we found that spectrum range chosen by VIP and model built by PLS-DA could provide greater accuracy in identifying paris polyphylla from different origin areas. The method supplied foundation for authenticity and quality evaluation of traditional Chinese medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方的契完成签到,获得积分10
刚刚
1秒前
明天见发布了新的文献求助10
2秒前
踏实语海完成签到,获得积分10
2秒前
yan123完成签到,获得积分10
2秒前
shin0324发布了新的文献求助10
3秒前
赘婿应助与一人同游采纳,获得10
3秒前
虚幻诗柳完成签到,获得积分10
6秒前
大方的契发布了新的文献求助10
8秒前
changping应助come采纳,获得100
8秒前
8秒前
luozejun完成签到,获得积分10
10秒前
酷波er应助李陈采纳,获得10
11秒前
Lucas应助宋贺贺采纳,获得10
12秒前
哈哈环完成签到 ,获得积分10
12秒前
12秒前
qnd关注了科研通微信公众号
12秒前
gqq完成签到,获得积分10
13秒前
ZJFL完成签到,获得积分10
14秒前
14秒前
15秒前
唯旧发布了新的文献求助10
15秒前
12345完成签到,获得积分10
15秒前
Yuri完成签到,获得积分10
16秒前
17秒前
17秒前
rumengzhuo完成签到,获得积分10
17秒前
18秒前
鳗鱼不尤完成签到,获得积分10
18秒前
充电宝应助可爱丹彤采纳,获得10
18秒前
爆学的狗发布了新的文献求助10
19秒前
绮山发布了新的文献求助10
20秒前
20秒前
20秒前
斯文败类应助tgd采纳,获得10
20秒前
茶茶发布了新的文献求助10
23秒前
LIZI22发布了新的文献求助10
24秒前
李旭桐完成签到,获得积分10
25秒前
李陈发布了新的文献求助10
25秒前
张泽龄完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501