Improved Kalman filter with unknown inputs based on data fusion of partial acceleration and displacement measurements

卡尔曼滤波器 传感器融合 状态向量 控制理论(社会学) 计算机科学 正规化(语言学) 流离失所(心理学) 加速度 滤波器(信号处理) 数学 算法 人工智能 物理 计算机视觉 经典力学 心理治疗师 控制(管理) 心理学
作者
Lijun Liu,Jiajia Zhu,Ying Su,Ying Lei
出处
期刊:Smart Structures and Systems [Techno-Press]
卷期号:17 (6): 903-915 被引量:18
标识
DOI:10.12989/sss.2016.17.6.903
摘要

The classical Kalman filter (KF) provides a practical and efficient state estimation approach for structural identification and vibration control. However, the classical KF approach is applicable only when external inputs are assumed known. Over the years, some approaches based on Kalman filter with unknown inputs (KF-UI) have been presented. However, these approaches based solely on acceleration measurements are inherently unstable which leads poor tracking and so-called drifts in the estimated unknown inputs and structural displacement in the presence of measurement noises. Either on-line regularization schemes or post signal processing is required to treat the drifts in the identification results, which prohibits the real-time identification of joint structural state and unknown inputs. In this paper, it is aimed to extend the classical KF approach to circumvent the above limitation for real time joint estimation of structural states and the unknown inputs. Based on the scheme of the classical KF, analytical recursive solutions of an improved Kalman filter with unknown excitations (KF-UI) are derived and presented. Moreover, data fusion of partially measured displacement and acceleration responses is used to prevent in real time the so-called drifts in the estimated structural state vector and unknown external inputs. The effectiveness and performance of the proposed approach are demonstrated by some numerical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助飘逸的凝荷采纳,获得10
刚刚
球球搞学术完成签到,获得积分20
刚刚
sunxs完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
Jasper应助程许采纳,获得30
4秒前
Hello应助HERACLE采纳,获得10
4秒前
zengxinhong完成签到,获得积分10
4秒前
缥缈南露发布了新的文献求助10
4秒前
翡冷翠完成签到,获得积分10
4秒前
科研通AI5应助cc采纳,获得10
5秒前
5秒前
小马甲应助liuxuying采纳,获得10
5秒前
5秒前
谦让沛儿关注了科研通微信公众号
5秒前
额嗯额完成签到,获得积分20
6秒前
Akim应助obaica采纳,获得10
6秒前
Flyzhang发布了新的文献求助10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
劲秉应助科研通管家采纳,获得10
7秒前
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
SYLH应助科研通管家采纳,获得10
8秒前
在水一方应助缥缈南露采纳,获得10
8秒前
9秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483444
求助须知:如何正确求助?哪些是违规求助? 3072776
关于积分的说明 9127955
捐赠科研通 2764341
什么是DOI,文献DOI怎么找? 1517151
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797