发泡剂
聚氨酯
材料科学
复合材料
成核
热导率
多元醇
丙酮
抗压强度
热的
形态学(生物学)
化学
有机化学
物理
生物
气象学
遗传学
作者
Yeongbeom Lee,Myung Geun Jang,Kun Hyung Choi,Chonghun Han,Woo Nyon Kim
摘要
ABSTRACT The effects of liquid‐type additives on the morphology, thermal conductivity, and mechanical strength of polyurethane (PUR) foams were investigated. The PUR foams synthesized with perfluoroalkane showed a smaller average cell diameter and a lower thermal conductivity than PUR foams prepared with propylenecarbonate or acetone. The average cell diameter of the PUR foams decreased from 228 to 155 μm and the thermal conductivity decreased from 0.0227 to 0.0196 kcal/mh °C when the perfluoroalkane content was 0.0 to 2.0 php (parts per hundred polyol by weight). The perfluoroalkane likely acted as a nucleating agent during the formation of the PUR foams. The addition of perfluoroalkane induced the smaller cells size of the PUR foams probably due to lower surface tension of the polyol and perfluoroalkane mixture, resulting in high nucleation rate. The smaller cell size appears to be the main reason for the improvement in the thermal insulating and the mechanical properties of these PUR foams. The compressive strength of the PUR foams prepared with perfluoroalkane was higher than the PUR foams prepared with the propylenecarbonate and acetone. Based on the morphology, thermal conductivity, and compressive strength, it is suggested that the perfluoroalkane is an efficient liquid‐type additive for the improving the thermal insulation of PUR foams. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133 , 43557.
科研通智能强力驱动
Strongly Powered by AbleSci AI