Predicting Population Dynamics from the Properties of Individuals: A Cross-Level Test of Dynamic Energy Budget Theory

水蚤 人口 能源预算 人口周期 生态学 大型水蚤 动力学(音乐) 生物 计量经济学 统计 数学 人口学 物理 捕食 化学 有机化学 毒性 甲壳动物 社会学 声学
作者
Benjamin T. Martin,Tjalling Jager,Roger M. Nisbet,Thomas G. Preuß,Volker Grimm
出处
期刊:The American Naturalist [The University of Chicago Press]
卷期号:181 (4): 506-519 被引量:108
标识
DOI:10.1086/669904
摘要

Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗尔安应助科研通管家采纳,获得10
刚刚
华仔应助543采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
乐乐应助瀛瀛采纳,获得10
刚刚
王九八发布了新的文献求助10
1秒前
荣誉完成签到,获得积分0
1秒前
2秒前
3秒前
小尹发布了新的文献求助10
5秒前
6秒前
lyz666发布了新的文献求助10
6秒前
6秒前
Valtpus发布了新的文献求助10
8秒前
王王完成签到,获得积分10
8秒前
使命完成签到,获得积分10
8秒前
吴巷玉完成签到,获得积分10
12秒前
13秒前
Tiger完成签到,获得积分10
16秒前
子车茗应助blance采纳,获得30
16秒前
Valtpus完成签到,获得积分10
17秒前
17秒前
19秒前
蚂蚁Y嘿应助baolongzhan采纳,获得10
19秒前
少少完成签到,获得积分10
19秒前
大好人发布了新的文献求助10
20秒前
善学以致用应助Random_8758采纳,获得10
21秒前
22秒前
23秒前
23秒前
23秒前
24秒前
25秒前
Mollyshimmer完成签到,获得积分10
25秒前
Cpp关闭了Cpp文献求助
26秒前
ROU发布了新的文献求助10
29秒前
29秒前
29秒前
Peng完成签到 ,获得积分10
29秒前
zzz2193发布了新的文献求助10
29秒前
30秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3270111
求助须知:如何正确求助?哪些是违规求助? 2909739
关于积分的说明 8350306
捐赠科研通 2580102
什么是DOI,文献DOI怎么找? 1403143
科研通“疑难数据库(出版商)”最低求助积分说明 655653
邀请新用户注册赠送积分活动 635044