High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS) harness differences in ion mobility in low and high electric fields to achieve a gas-phase separation of ions at atmospheric pressure. This separation is orthogonal to either chromatographic or mass spectrometric separation, thereby increasing the selectivity and specificity of analysis. The orthogonality of separation, which in some cases may obviate chromatographic separation, can be used to differentiate isomers, to reduce background, to resolve isobaric species, and to improve signal-to-noise ratios by selective ion transmission. This review will focus on the applications of these techniques to the separation of various classes of analytes, including chemical weapons, explosives, biologically active molecules, pharmaceuticals and pollutants. These papers cover the period up to January 2007.