Human metabolic individuality in biomedical and pharmaceutical research

药学 生物 计算生物学 数据科学 计算机科学 药理学
作者
Karsten Suhre,So–Youn Shin,Annette Peters,Robert P. Mohney,David Meredith,Brigitte Wägele,Elisabeth Altmaier,Panos Deloukas,Jeanette Erdmann,Elin Grundberg,Christopher J. Hammond,Martin Hrabě de Angelis,Gabi Kastenmüller,Anna Köttgen,Florian Kronenberg,Massimo Mangino,Christa Meisinger,Thomas Meitinger,Hans‐Werner Mewes,Michael V. Milburn
出处
期刊:Nature [Nature Portfolio]
卷期号:477 (7362): 54-60 被引量:997
标识
DOI:10.1038/nature10354
摘要

Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10–60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn’s disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research. The interaction of genetic predispositions with environmental factors is key to the pathogenesis of complex diseases. A promising approach to understanding this relationship combines a genome-wide association study (GWAS) with the analysis of blood metabolites as functional intermediate phenotypes. The potential of this method is demonstrated by a large-scale cooperation combining data from the German KORA F4 and the British TwinsUK population studies. GWAS data, together with non-targeted metabolomics covering 60 biochemical pathways in 2,820 individuals, have identified 37 genetic loci associated with blood metabolite concentrations, 25 of them with unusually high effect sizes for a GWAS. These associations provide new functional insights for many previously reported associations, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyyge发布了新的文献求助20
刚刚
不想干活应助美好斓采纳,获得10
刚刚
未晚完成签到,获得积分10
1秒前
邱梓铭完成签到,获得积分10
1秒前
2秒前
DD完成签到,获得积分10
2秒前
zmmm完成签到,获得积分10
3秒前
3秒前
陌上尘开发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
星辰大海应助warburg采纳,获得10
4秒前
LAYWL完成签到,获得积分10
4秒前
九月初五完成签到,获得积分10
5秒前
爆米花应助Anatee采纳,获得10
5秒前
5秒前
DXF关闭了DXF文献求助
6秒前
哇哈哈发布了新的文献求助10
6秒前
少冰丶七分糖完成签到,获得积分10
6秒前
归去来兮发布了新的文献求助10
7秒前
甜美平文发布了新的文献求助10
7秒前
hi小豆发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
赤恩完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
9秒前
酷炫book完成签到 ,获得积分10
9秒前
WQ完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
ysy完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743