Human metabolic individuality in biomedical and pharmaceutical research

药学 生物 计算生物学 数据科学 计算机科学 药理学
作者
Karsten Suhre,So–Youn Shin,Annette Peters,Robert P. Mohney,David Meredith,Brigitte Wägele,Elisabeth Altmaier,Panos Deloukas,Jeanette Erdmann,Elin Grundberg,Christopher J. Hammond,Martin Hrabě de Angelis,Gabi Kastenmüller,Anna Köttgen,Florian Kronenberg,Massimo Mangino,Christa Meisinger,Thomas Meitinger,Hans‐Werner Mewes,Michael V. Milburn
出处
期刊:Nature [Springer Nature]
卷期号:477 (7362): 54-60 被引量:997
标识
DOI:10.1038/nature10354
摘要

Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 show effect sizes that are unusually high for GWAS and account for 10–60% differences in metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn’s disease. The study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research. The interaction of genetic predispositions with environmental factors is key to the pathogenesis of complex diseases. A promising approach to understanding this relationship combines a genome-wide association study (GWAS) with the analysis of blood metabolites as functional intermediate phenotypes. The potential of this method is demonstrated by a large-scale cooperation combining data from the German KORA F4 and the British TwinsUK population studies. GWAS data, together with non-targeted metabolomics covering 60 biochemical pathways in 2,820 individuals, have identified 37 genetic loci associated with blood metabolite concentrations, 25 of them with unusually high effect sizes for a GWAS. These associations provide new functional insights for many previously reported associations, including those for cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism and Crohn's disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡卡完成签到,获得积分20
刚刚
Ykn完成签到,获得积分10
刚刚
1秒前
2秒前
鸢翔flybird完成签到,获得积分10
2秒前
甜蜜的缘郡完成签到,获得积分10
3秒前
研友_ZGDQK8发布了新的文献求助10
6秒前
鹏程完成签到,获得积分10
6秒前
卡卡发布了新的文献求助10
6秒前
XIEQ发布了新的文献求助10
7秒前
7秒前
8秒前
medgreat发布了新的文献求助10
8秒前
精灵发布了新的文献求助20
10秒前
10秒前
大模型应助ayu采纳,获得10
10秒前
yysghr完成签到,获得积分10
10秒前
传奇3应助cc采纳,获得10
13秒前
yysghr发布了新的文献求助10
13秒前
thin完成签到,获得积分10
14秒前
ax8888发布了新的文献求助10
14秒前
16秒前
SUNLE完成签到,获得积分10
16秒前
zmj发布了新的文献求助10
16秒前
17秒前
17秒前
ZL完成签到 ,获得积分10
18秒前
传奇3应助卡卡采纳,获得10
18秒前
19秒前
19秒前
华仔应助追光者采纳,获得10
21秒前
脑洞疼应助木木采纳,获得10
22秒前
wuyi完成签到,获得积分10
22秒前
ayu发布了新的文献求助10
23秒前
24秒前
乌日发布了新的文献求助10
24秒前
24秒前
忧伤的步美完成签到,获得积分10
25秒前
joeqin完成签到,获得积分10
26秒前
天天快乐应助xn采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5605773
求助须知:如何正确求助?哪些是违规求助? 4690365
关于积分的说明 14863216
捐赠科研通 4702671
什么是DOI,文献DOI怎么找? 2542266
邀请新用户注册赠送积分活动 1507862
关于科研通互助平台的介绍 1472159