NetMHCpan, a method for MHC class I binding prediction beyond humans

主要组织相容性复合体 生物 MHC I级 人类白细胞抗原 猕猴 恒河猴 遗传学 MHC II级 与抗原处理相关的转运体 MHC限制 计算生物学 等位基因 免疫系统 抗原 基因 神经科学
作者
Ilka Hoof,Bjoern Peters,John Sidney,Lasse Eggers Pedersen,Alessandro Sette,Ole Lund,Søren Buus,Morten Nielsen
出处
期刊:Immunogenetics [Springer Science+Business Media]
卷期号:61 (1): 1-13 被引量:686
标识
DOI:10.1007/s00251-008-0341-z
摘要

Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method's ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助猫小咪采纳,获得10
刚刚
兴奋大船完成签到,获得积分10
1秒前
小谢完成签到,获得积分10
1秒前
Ava应助日暮不评采纳,获得10
1秒前
1秒前
精神发布了新的文献求助10
1秒前
材料生发布了新的文献求助10
2秒前
搜集达人应助xuxuxuxuxu采纳,获得10
2秒前
科研通AI6应助tracer采纳,获得10
2秒前
汉堡包应助小右采纳,获得30
3秒前
怡然平萱完成签到,获得积分10
3秒前
小二郎应助九川采纳,获得10
3秒前
sun完成签到 ,获得积分10
3秒前
du完成签到,获得积分10
3秒前
成事在人307完成签到,获得积分10
3秒前
研友_VZG7GZ应助无定采纳,获得10
4秒前
小不点完成签到,获得积分10
4秒前
5秒前
士载完成签到,获得积分10
5秒前
苏苏发布了新的文献求助10
5秒前
金蕊完成签到,获得积分10
6秒前
Owen应助可靠之玉采纳,获得10
6秒前
乔乔完成签到,获得积分10
6秒前
xuxuxuxuxu完成签到,获得积分10
8秒前
marson发布了新的文献求助10
8秒前
8秒前
桐桐应助微笑向卉采纳,获得10
8秒前
壮观听芹关注了科研通微信公众号
9秒前
科研通AI6应助nunup5采纳,获得10
9秒前
9秒前
guozizi驳回了Owen应助
9秒前
彭凯发布了新的文献求助20
10秒前
小硕土川完成签到,获得积分10
10秒前
sang发布了新的文献求助10
11秒前
Wei完成签到,获得积分10
12秒前
罗小马完成签到,获得积分10
13秒前
13秒前
凉城予梦完成签到,获得积分10
13秒前
挽风完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助100
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4614925
求助须知:如何正确求助?哪些是违规求助? 4018912
关于积分的说明 12440362
捐赠科研通 3701783
什么是DOI,文献DOI怎么找? 2041353
邀请新用户注册赠送积分活动 1074080
科研通“疑难数据库(出版商)”最低求助积分说明 957723