NetMHCpan, a method for MHC class I binding prediction beyond humans

主要组织相容性复合体 生物 MHC I级 人类白细胞抗原 猕猴 恒河猴 遗传学 MHC II级 与抗原处理相关的转运体 MHC限制 计算生物学 等位基因 免疫系统 抗原 基因 神经科学
作者
Ilka Hoof,Bjoern Peters,John Sidney,Lasse Eggers Pedersen,Alessandro Sette,Ole Lund,Søren Buus,Morten Nielsen
出处
期刊:Immunogenetics [Springer Science+Business Media]
卷期号:61 (1): 1-13 被引量:686
标识
DOI:10.1007/s00251-008-0341-z
摘要

Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide-MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method's ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助墨色采纳,获得10
刚刚
舍曲林完成签到,获得积分10
刚刚
坤坤完成签到,获得积分10
1秒前
bkagyin应助苏苏采纳,获得10
1秒前
打打应助Cindy采纳,获得10
1秒前
西柚发布了新的文献求助10
1秒前
2秒前
MZG完成签到,获得积分10
3秒前
华仔应助jiangyi采纳,获得20
3秒前
苗条的麦片关注了科研通微信公众号
3秒前
浮游应助ACE采纳,获得10
3秒前
Muccio发布了新的文献求助10
4秒前
111完成签到,获得积分20
4秒前
苹果丹烟完成签到,获得积分10
5秒前
5秒前
英俊的铭应助chlift采纳,获得10
5秒前
晓人儿发布了新的文献求助10
5秒前
溫蒂发布了新的文献求助20
5秒前
邓佳鑫Alan应助加缪采纳,获得50
5秒前
wu发布了新的文献求助10
6秒前
失眠夏山完成签到,获得积分10
6秒前
俟风落秋叶完成签到,获得积分10
6秒前
彭于晏应助慎獨采纳,获得10
6秒前
晴朗发布了新的文献求助10
6秒前
sunchang完成签到,获得积分10
6秒前
小米呀完成签到,获得积分20
7秒前
顾矜应助zh20130采纳,获得10
7秒前
科研通AI5应助lilili采纳,获得10
7秒前
8秒前
可爱的函函应助天天采纳,获得10
8秒前
浮游应助Sue采纳,获得10
9秒前
清秀的煜城完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助150
10秒前
浮游应助ACE采纳,获得10
10秒前
10秒前
10秒前
华仔应助杨情缘采纳,获得10
10秒前
paper发布了新的文献求助200
11秒前
12秒前
幽默觅翠完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095428
求助须知:如何正确求助?哪些是违规求助? 4308538
关于积分的说明 13424622
捐赠科研通 4135366
什么是DOI,文献DOI怎么找? 2265484
邀请新用户注册赠送积分活动 1268868
关于科研通互助平台的介绍 1204869