估计员
广义线性混合模型
广义线性模型
应用数学
层次广义线性模型
线性模型
数学
数学优化
渐近最优算法
广义线性阵列模型
混合模型
广义加性模型
期限(时间)
统计
量子力学
物理
作者
Xinyu Zhang,Dalei Yu,Guohua Zou,Hua Liang
标识
DOI:10.1080/01621459.2015.1115762
摘要
Considering model averaging estimation in generalized linear models, we propose a weight choice criterion based on the Kullback–Leibler (KL) loss with a penalty term. This criterion is different from that for continuous observations in principle, but reduces to the Mallows criterion in the situation. We prove that the corresponding model averaging estimator is asymptotically optimal under certain assumptions. We further extend our concern to the generalized linear mixed-effects model framework and establish associated theory. Numerical experiments illustrate that the proposed method is promising.
科研通智能强力驱动
Strongly Powered by AbleSci AI