卡林
泛素
生物
泛素连接酶
细胞生物学
蛋白酶体
转录因子
蛋白质降解
F盒蛋白
泛素蛋白连接酶类
NEDD8公司
生物化学
基因
作者
Zhihua Hua,Richard D. Vierstra
标识
DOI:10.1146/annurev-arplant-042809-112256
摘要
The posttranslational addition of ubiquitin (Ub) helps control the half-life, localization, and action of many intracellular plant proteins. A primary function is the degradation of ubiquitylated proteins by the 26S proteasome, which in turn plays important housekeeping and regulatory roles by removing aberrant polypeptides and various normal short-lived regulators. Strikingly, both genetic and genomic studies reveal that Ub conjugation is extraordinarily complex in plants, with more than 1500 Ub-protein ligases (or E3s) possible that could direct the final transfer of the Ub moiety to an equally large number of targets. The cullin-RING ligases (CRLs) are a highly polymorphic E3 collection composed of a cullin backbone onto which binds carriers of activated Ub and a diverse assortment of adaptors that recruit appropriate substrates for ubiquitylation. Here, we review our current understanding of the organization and structure of CRLs in plants and their dynamics, substrates, potential functions, and evolution. The importance of CRLs is exemplified by their ability to serve as sensors of hormones and light; their essential participation in various signaling pathways; their control of the cell cycle, transcription, the stress response, self-incompatibility, and pathogen defense; and their dramatically divergent evolutionary histories in many plant lineages. Given both their organizational complexities and their critical influences, CRLs likely impact most, if not all, aspects of plant biology.
科研通智能强力驱动
Strongly Powered by AbleSci AI