R-GDORUS technology: Effectively solving the Raman spectral data imbalance in medical diagnosis

欠采样 拉曼光谱 过采样 计算机科学 人工智能 随机森林 采样(信号处理) 模式识别(心理学) 机器学习 物理 带宽(计算) 计算机网络 计算机视觉 滤波器(信号处理) 光学
作者
Chen Chen,Xue Wu,Enguang Zuo,Cheng Chen,Xiaoyi Lv,Lijun Wu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:235: 104762-104762 被引量:5
标识
DOI:10.1016/j.chemolab.2023.104762
摘要

Raman spectroscopy combined with artificial intelligence (AI) is widely used in medical diagnostic research and has great application value. However, there are still problems in the research process, such as the low prevalence of some diseases and difficulties in obtaining research samples, which will easily lead to data imbalance in medical Raman spectroscopy research. For AI classification and diagnosis algorithms, when the data imbalance problem is not addressed, majority class samples are selected, and the importance of minority class samples is ignored, reducing the accuracy of disease identification. Based on the above problems, this paper proposes a hybrid sampling technique of Raman-Gaussian distributed oversampling fused with random undersampling (R-GDORUS) to solve the data imbalance problem in medical Raman spectroscopy. The density and distance information carried by the minority samples are used to obtain the selection probability of the minority samples, determine the anchor samples from the minority samples, and generate a new minority sample in the form of a Gaussian distribution. Finally, a random undersampling strategy is used to remove some of the majority class spectral samples. This technique and five other mainstream methods for handling imbalanced data are applied to three major types of imbalanced medical Raman spectroscopy datasets: malignant tumors, class B infectious diseases and autoimmune diseases, and the performance of the technique is evaluated using the AUC and G-mean values. The results demonstrate that the proposed technique can be used to effectively reduce the impact of impaired model performance caused by spectral data imbalance and has good application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
劲秉应助潦草采纳,获得10
1秒前
Shaangueuropa完成签到,获得积分10
2秒前
思源应助罗健采纳,获得10
2秒前
4秒前
5秒前
风中故事发布了新的文献求助10
5秒前
华仔应助超级香之采纳,获得10
6秒前
SYLH应助华北走地鸡采纳,获得10
8秒前
9秒前
六天完成签到,获得积分20
11秒前
花佩剑发布了新的文献求助10
11秒前
11秒前
bird完成签到,获得积分10
12秒前
13秒前
刘燕完成签到,获得积分10
14秒前
15秒前
田様应助虎虎虎采纳,获得10
16秒前
花佩剑完成签到,获得积分10
16秒前
酷酷友容给David的求助进行了留言
16秒前
慕青应助墨羽采纳,获得10
17秒前
CodeCraft应助yyy采纳,获得10
17秒前
18秒前
jiiiawa应助所得皆所愿采纳,获得10
19秒前
wary发布了新的文献求助10
19秒前
duanhuiyuan应助三七采纳,获得10
21秒前
21秒前
23秒前
huangweiwei完成签到,获得积分10
23秒前
24秒前
Wdwpp发布了新的文献求助30
25秒前
26秒前
jiajie_qin应助科研通管家采纳,获得20
26秒前
duanhuiyuan应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得10
26秒前
26秒前
duanhuiyuan应助科研通管家采纳,获得10
26秒前
所所应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459305
求助须知:如何正确求助?哪些是违规求助? 3053795
关于积分的说明 9038595
捐赠科研通 2743133
什么是DOI,文献DOI怎么找? 1504672
科研通“疑难数据库(出版商)”最低求助积分说明 695354
邀请新用户注册赠送积分活动 694664