R-GDORUS technology: Effectively solving the Raman spectral data imbalance in medical diagnosis

欠采样 拉曼光谱 过采样 计算机科学 人工智能 随机森林 采样(信号处理) 模式识别(心理学) 机器学习 物理 带宽(计算) 计算机网络 计算机视觉 滤波器(信号处理) 光学
作者
Chen Chen,Xue Wu,Enguang Zuo,Cheng Chen,Xiaoyi Lv,Lijun Wu
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:235: 104762-104762 被引量:5
标识
DOI:10.1016/j.chemolab.2023.104762
摘要

Raman spectroscopy combined with artificial intelligence (AI) is widely used in medical diagnostic research and has great application value. However, there are still problems in the research process, such as the low prevalence of some diseases and difficulties in obtaining research samples, which will easily lead to data imbalance in medical Raman spectroscopy research. For AI classification and diagnosis algorithms, when the data imbalance problem is not addressed, majority class samples are selected, and the importance of minority class samples is ignored, reducing the accuracy of disease identification. Based on the above problems, this paper proposes a hybrid sampling technique of Raman-Gaussian distributed oversampling fused with random undersampling (R-GDORUS) to solve the data imbalance problem in medical Raman spectroscopy. The density and distance information carried by the minority samples are used to obtain the selection probability of the minority samples, determine the anchor samples from the minority samples, and generate a new minority sample in the form of a Gaussian distribution. Finally, a random undersampling strategy is used to remove some of the majority class spectral samples. This technique and five other mainstream methods for handling imbalanced data are applied to three major types of imbalanced medical Raman spectroscopy datasets: malignant tumors, class B infectious diseases and autoimmune diseases, and the performance of the technique is evaluated using the AUC and G-mean values. The results demonstrate that the proposed technique can be used to effectively reduce the impact of impaired model performance caused by spectral data imbalance and has good application prospects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JohnZhao完成签到,获得积分10
刚刚
陈醒醒完成签到,获得积分10
刚刚
多情怜蕾完成签到,获得积分10
1秒前
星辰大海应助小樊同学采纳,获得10
1秒前
遮宁完成签到,获得积分10
1秒前
明天又是美好的一天完成签到 ,获得积分10
1秒前
还单身的惜文完成签到 ,获得积分10
2秒前
悠夏sunny完成签到,获得积分10
3秒前
文剑武书生完成签到,获得积分10
3秒前
华仔应助TURBO采纳,获得10
4秒前
杰克李李完成签到,获得积分10
4秒前
亮仔发布了新的文献求助10
4秒前
herococa应助fangzhang采纳,获得10
4秒前
木头人完成签到,获得积分10
5秒前
阿伟完成签到,获得积分10
5秒前
小樊同学完成签到,获得积分10
6秒前
湘湘完成签到 ,获得积分10
6秒前
6秒前
lobster完成签到 ,获得积分10
7秒前
钟小凯完成签到 ,获得积分10
7秒前
morena应助包子采纳,获得40
7秒前
sresr完成签到,获得积分10
7秒前
高贵路灯完成签到,获得积分10
8秒前
zj完成签到,获得积分10
8秒前
务实的紫伊完成签到,获得积分10
8秒前
免疫方舟完成签到,获得积分10
9秒前
鲑鱼完成签到 ,获得积分10
9秒前
YY完成签到,获得积分10
10秒前
天真的乌完成签到 ,获得积分10
11秒前
烂漫奇异果完成签到,获得积分10
11秒前
miao完成签到,获得积分10
11秒前
11秒前
青柠完成签到,获得积分10
11秒前
无油烟完成签到,获得积分10
12秒前
Zoe完成签到,获得积分10
12秒前
rio发布了新的文献求助10
13秒前
xsf完成签到,获得积分10
13秒前
项听蓉完成签到,获得积分10
13秒前
沉静的红酒完成签到,获得积分10
13秒前
小白完成签到 ,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855