Predicting the Glycemic Index of Biscuits Using Static In Vitro Digestion Protocols

消化(炼金术) 淀粉酶 升糖指数 食品科学 化学 血糖指数 体外 色谱法 数学 生物化学 血糖性 生物技术 生物 胰岛素
作者
Xingguang Peng,Hongsheng Liu,Xuying Li,Huaibin Wang,Kejia Zhang,Shuangqi Li,Xianyang Bao,Wei Zou,Wenwen Yu
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 404-404 被引量:2
标识
DOI:10.3390/foods12020404
摘要

In vitro digestion methods that can accurately predict the estimated GI (eGI) values of complex carbohydrate foods, including biscuits, are worth exploring. In the current study, standard commercial biscuits with varied clinical GI values between 9~30 were digested using both the INFOGEST and single-enzyme digestion protocols. The digestion kinetic parameters were acquired through mathematical fitting by mathematical kinetics models. The results showed that compared with the INFOGEST protocol, the AUR180 deduced from digesting using either porcine pancreatin or α-amylase showed the best potential in predicting the eGI values. Accordingly, mathematical equations were established based on the relations between the AUR180 and the GI values. When digesting using porcine pancreatin, GI= 1.834 + 0.009 ×AUCR180 (R2= 0.952), and when digesting using only α-amylase, GI= 6.101 + 0.009 ×AUCR180 (R2=0.902). The AUR180 represents the area under the curve of the reducing-sugar content normalized to the total carbohydrates versus the digestion time in 180 min. The in vitro method presented enabled the rapid and accurate prediction of the eGI values of biscuits, and the validity of the formula was verified by another batch of biscuits with a known GI, and the error rate of most samples was less than 30%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wing完成签到 ,获得积分10
1秒前
1秒前
顺利的荔枝完成签到,获得积分10
4秒前
4秒前
无敌大裤衩完成签到,获得积分10
4秒前
英俊的铭应助smalldesk采纳,获得10
5秒前
SYLH应助dd采纳,获得10
5秒前
小肥羊发布了新的文献求助10
6秒前
7秒前
7秒前
搜集达人应助kk采纳,获得10
8秒前
汉堡包应助22222采纳,获得10
9秒前
11秒前
11秒前
冷酷茹妖关注了科研通微信公众号
11秒前
科研通AI2S应助HJJHJH采纳,获得10
11秒前
小肥羊完成签到,获得积分10
13秒前
13秒前
林雨完成签到,获得积分10
14秒前
深情安青应助1231采纳,获得10
14秒前
14秒前
清风完成签到,获得积分20
14秒前
15秒前
16秒前
小飞鱼完成签到,获得积分10
16秒前
独孤妖月发布了新的文献求助30
17秒前
17秒前
杨航完成签到,获得积分10
18秒前
果汁完成签到,获得积分10
19秒前
隐形曼青应助幽默的百川采纳,获得10
19秒前
19秒前
19秒前
19秒前
酷波er应助微风采纳,获得10
20秒前
麟钰发布了新的文献求助10
20秒前
21秒前
21秒前
GQL发布了新的文献求助10
21秒前
1147468624完成签到,获得积分20
22秒前
归尘应助1233333采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3971441
求助须知:如何正确求助?哪些是违规求助? 3516161
关于积分的说明 11181180
捐赠科研通 3251322
什么是DOI,文献DOI怎么找? 1795788
邀请新用户注册赠送积分活动 876026
科研通“疑难数据库(出版商)”最低求助积分说明 805228