Auditory stimulation and deep learning predict awakening from coma after cardiac arrest

彗差(光学) 镇静 脑电图 临床神经生理学 医学 目标温度管理 听力学 心理学 麻醉 神经科学 心肺复苏术 复苏 自然循环恢复 光学 物理
作者
Florence M. Aellen,Sigurd L. Alnes,Fabian Loosli,Andrea O. Rossetti,Frédéric Zubler,Marzia De Lucia,Athina Tzovara
出处
期刊:Brain [Oxford University Press]
卷期号:146 (2): 778-788 被引量:25
标识
DOI:10.1093/brain/awac340
摘要

Abstract Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients’ chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients’ chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical ‘grey zone’. The network’s confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的语海完成签到,获得积分10
1秒前
,,,发布了新的文献求助10
1秒前
2秒前
3秒前
lighting完成签到 ,获得积分10
3秒前
4秒前
小飞鼠完成签到,获得积分10
4秒前
野猪发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助酷酷的幼枫采纳,获得10
5秒前
5秒前
having完成签到,获得积分10
6秒前
6秒前
kk发布了新的文献求助10
6秒前
金振龙完成签到,获得积分10
6秒前
余其钵完成签到,获得积分10
6秒前
6秒前
晚风完成签到,获得积分10
7秒前
甜甜的大米完成签到,获得积分10
7秒前
7秒前
panda发布了新的文献求助10
7秒前
开朗发卡完成签到,获得积分10
7秒前
王佩洋发布了新的文献求助10
8秒前
浮游应助沉默寒安采纳,获得10
9秒前
紧张的谷槐完成签到,获得积分10
9秒前
打打应助杜佳琼采纳,获得10
9秒前
10秒前
11秒前
wbshore发布了新的文献求助30
11秒前
负阳氧应助大道采纳,获得10
11秒前
小蘑菇应助5x采纳,获得10
11秒前
Liii完成签到 ,获得积分10
12秒前
12秒前
斯文的馒头完成签到,获得积分10
12秒前
12秒前
阔达晓博完成签到,获得积分10
12秒前
友好凡霜完成签到,获得积分10
13秒前
vivi发布了新的文献求助20
13秒前
A徽完成签到,获得积分20
14秒前
勤奋的青梦完成签到,获得积分20
14秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581398
求助须知:如何正确求助?哪些是违规求助? 4665771
关于积分的说明 14758591
捐赠科研通 4607692
什么是DOI,文献DOI怎么找? 2528319
邀请新用户注册赠送积分活动 1497608
关于科研通互助平台的介绍 1466474