Auditory stimulation and deep learning predict awakening from coma after cardiac arrest

彗差(光学) 镇静 脑电图 临床神经生理学 医学 目标温度管理 听力学 心理学 麻醉 神经科学 心肺复苏术 复苏 自然循环恢复 光学 物理
作者
Florence M. Aellen,Sigurd L. Alnes,Fabian Loosli,Andrea O. Rossetti,Frédéric Zubler,Marzia De Lucia,Athina Tzovara
出处
期刊:Brain [Oxford University Press]
卷期号:146 (2): 778-788 被引量:25
标识
DOI:10.1093/brain/awac340
摘要

Abstract Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients’ chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients’ chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical ‘grey zone’. The network’s confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐易发布了新的文献求助30
1秒前
2秒前
zxzhappy完成签到,获得积分10
2秒前
深情安青应助zzz采纳,获得10
3秒前
4秒前
noflatterer完成签到,获得积分10
5秒前
5秒前
Harlotte完成签到 ,获得积分10
5秒前
6秒前
蚂蚱别跳发布了新的文献求助10
9秒前
cavendipeng发布了新的文献求助100
9秒前
yxt完成签到,获得积分10
10秒前
10秒前
张豪杰完成签到 ,获得积分10
10秒前
10秒前
10秒前
大方茹妖完成签到,获得积分10
11秒前
漏脑之鱼完成签到 ,获得积分10
11秒前
赵卫星发布了新的文献求助10
12秒前
14秒前
XJTU_jyh完成签到,获得积分10
14秒前
wang5945发布了新的文献求助10
15秒前
哈哈哈哈完成签到,获得积分10
15秒前
慕青应助大方的契采纳,获得10
15秒前
等风等你完成签到,获得积分10
16秒前
浮游应助Jally采纳,获得10
16秒前
能干戒指完成签到,获得积分10
16秒前
激流勇进wb完成签到 ,获得积分10
18秒前
Rui_Rui应助毛毛采纳,获得10
18秒前
Ava应助赵卫星采纳,获得10
18秒前
吕小布完成签到,获得积分10
19秒前
大模型应助蚂蚱别跳采纳,获得10
19秒前
深情安青应助伶俐摩托采纳,获得30
20秒前
程晓研完成签到 ,获得积分10
20秒前
小白发布了新的文献求助10
20秒前
小马甲应助shin0324采纳,获得10
21秒前
顺心的皮卡丘完成签到 ,获得积分10
21秒前
Csm完成签到,获得积分10
22秒前
tgd完成签到,获得积分10
22秒前
natmed完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305017
求助须知:如何正确求助?哪些是违规求助? 4451211
关于积分的说明 13851392
捐赠科研通 4338545
什么是DOI,文献DOI怎么找? 2381993
邀请新用户注册赠送积分活动 1377139
关于科研通互助平台的介绍 1344501