Auditory stimulation and deep learning predict awakening from coma after cardiac arrest

彗差(光学) 镇静 脑电图 临床神经生理学 医学 目标温度管理 听力学 心理学 麻醉 神经科学 心肺复苏术 复苏 自然循环恢复 光学 物理
作者
Florence M. Aellen,Sigurd L. Alnes,Fabian Loosli,Andrea O. Rossetti,Frédéric Zubler,Marzia De Lucia,Athina Tzovara
出处
期刊:Brain [Oxford University Press]
卷期号:146 (2): 778-788 被引量:25
标识
DOI:10.1093/brain/awac340
摘要

Abstract Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients’ chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients’ chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical ‘grey zone’. The network’s confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
肽聚糖完成签到,获得积分20
3秒前
510发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
汉堡包应助fff采纳,获得10
7秒前
7秒前
...发布了新的文献求助20
8秒前
huan发布了新的文献求助10
8秒前
8秒前
隐形曼青应助冷静的面包采纳,获得10
9秒前
10秒前
浆糊完成签到 ,获得积分10
10秒前
xxz发布了新的文献求助30
10秒前
10秒前
淡扫峨眉发布了新的文献求助10
13秒前
周星星完成签到,获得积分10
13秒前
清秀的鼠标完成签到,获得积分10
13秒前
13秒前
鲤鱼发布了新的文献求助10
14秒前
AR发布了新的文献求助10
14秒前
大包鸡完成签到 ,获得积分10
15秒前
Orange应助干净绮烟采纳,获得10
16秒前
科研通AI2S应助LiuChuannan采纳,获得10
17秒前
Mic应助LiuChuannan采纳,获得10
17秒前
17秒前
bridge发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
20秒前
冬虫夏草完成签到,获得积分10
21秒前
21秒前
Minzy完成签到,获得积分10
21秒前
胡慧婷发布了新的文献求助10
22秒前
爱笑映菡发布了新的文献求助10
23秒前
hy发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469