亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Auditory stimulation and deep learning predict awakening from coma after cardiac arrest

彗差(光学) 刺激 脑深部刺激 医学 心理学 麻醉 认知心理学 神经科学 内科学 光学 物理 帕金森病 疾病
作者
Florence M. Aellen,Sigurd L. Alnes,Fabian Loosli,Andrea O. Rossetti,Frédéric Zubler,Marzia De Lucia,Athina Tzovara
出处
期刊:Brain [Oxford University Press]
卷期号:146 (2): 778-788 被引量:14
标识
DOI:10.1093/brain/awac340
摘要

Abstract Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a ‘grey zone’, with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients’ chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients’ chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical ‘grey zone’. The network’s confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
6秒前
6秒前
南与晚霞发布了新的文献求助10
11秒前
deeperection发布了新的文献求助10
12秒前
斯文败类应助烤红薯采纳,获得10
19秒前
Dr.FelixFan完成签到 ,获得积分10
20秒前
RUOXI完成签到,获得积分10
24秒前
30秒前
欢喜怀绿完成签到,获得积分10
34秒前
虚幻泽洋完成签到,获得积分10
34秒前
47秒前
英姑应助欢喜怀绿采纳,获得10
47秒前
49秒前
搜集达人应助全鑫采纳,获得10
49秒前
52秒前
星远发布了新的文献求助10
53秒前
嘉心糖完成签到,获得积分0
54秒前
不理我发布了新的文献求助10
56秒前
褚青筠发布了新的文献求助10
59秒前
1分钟前
全鑫发布了新的文献求助10
1分钟前
褚青筠完成签到,获得积分10
1分钟前
1分钟前
1分钟前
张桐林发布了新的文献求助10
1分钟前
1分钟前
小象腿完成签到,获得积分10
1分钟前
张桐林完成签到,获得积分10
1分钟前
Rencc完成签到,获得积分10
1分钟前
伯赏聪展发布了新的文献求助10
1分钟前
8R60d8应助科研通管家采纳,获得10
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
杳鸢应助科研通管家采纳,获得10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
1分钟前
小二郎应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得30
1分钟前
wanci应助补药再看文献乐采纳,获得10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234488
求助须知:如何正确求助?哪些是违规求助? 2880883
关于积分的说明 8217231
捐赠科研通 2548429
什么是DOI,文献DOI怎么找? 1377761
科研通“疑难数据库(出版商)”最低求助积分说明 647999
邀请新用户注册赠送积分活动 623314