A hybrid machine learning model for predicting crater width formed by explosions of natural gas pipelines

支持向量机 管道运输 人工神经网络 管道(软件) 粒子群优化 算法 水准点(测量) 计算机科学 工程类 人工智能 数学优化 数学 地质学 机械工程 大地测量学
作者
Guojin Qin,Ailin Xia,Hongfang Lü,Yihuan Wang,Ruiling Li,Chengtao Wang
出处
期刊:Journal of Loss Prevention in The Process Industries [Elsevier BV]
卷期号:82: 104994-104994 被引量:16
标识
DOI:10.1016/j.jlp.2023.104994
摘要

Despite the existence of industry models for estimating the crater width formed by the explosion of natural gas pipelines, their applicability is still limited since the complex formation mechanisms. In this work, a novel hybrid model was developed to predict crater width formed by explosions of natural gas pipelines, using artificial neural networks (ANN) as the fundamental predictor. Based on the historical accident records, the proposed hybrid model was trained by the pipeline parameter, the operating condition, the installation parameter, and the crater width. A novel nature-inspired optimization algorithm, i.e., the Lévy-Weighted Quantum particle swarm optimization (LWQPSO) algorithm, was proposed to optimize the ANN model's parameters. Three machine learning models were developed for comparative reasons to predict the crater width. The use of precision and error analysis indicators assesses prediction performance. The results show that the proposed hybrid model (LWQPSO-ANN) has high prediction accuracy and stability, which outperforms QPSO-ANN-based benchmark hybrid models and the model without an optimizer (Support Vector Machine, SVM). The parameter sensitivities of the proposed algorithm, including the maximum number of iterations, population size and contraction-expansion coefficient, were determined. The proposed hybrid model is expected to support the quantitative risk assessment (QRA), Right-of-Way (ROW) definition and the inherently safer design of the underground parallel pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile完成签到,获得积分10
刚刚
马爱林完成签到,获得积分10
1秒前
莲枳榴莲完成签到,获得积分10
1秒前
Yy发布了新的文献求助10
1秒前
科研通AI5应助大方的舞蹈采纳,获得10
3秒前
ssd完成签到,获得积分20
3秒前
4秒前
4秒前
5秒前
5秒前
qianqian完成签到,获得积分10
5秒前
6秒前
桐桐完成签到,获得积分0
7秒前
7秒前
胡燕完成签到 ,获得积分10
7秒前
取法乎上完成签到 ,获得积分10
8秒前
LS发布了新的文献求助10
8秒前
9秒前
11秒前
吴大打完成签到,获得积分10
14秒前
Orange应助chai采纳,获得10
14秒前
柚子完成签到,获得积分10
14秒前
肉卷子关注了科研通微信公众号
15秒前
8R60d8应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
SYLH应助科研通管家采纳,获得20
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
huahero2025应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
8R60d8应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Yy完成签到,获得积分10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
今后应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
耍酷安双完成签到,获得积分20
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3754951
求助须知:如何正确求助?哪些是违规求助? 3298295
关于积分的说明 10104270
捐赠科研通 3012875
什么是DOI,文献DOI怎么找? 1654805
邀请新用户注册赠送积分活动 789194
科研通“疑难数据库(出版商)”最低求助积分说明 753214