Impact of air pollutants on influenza‐like illness outpatient visits under COVID‐19 pandemic in the subcenter of Beijing, China

北京 门诊就诊 空气质量指数 空气污染 医学 污染物 2019年冠状病毒病(COVID-19) 环境卫生 大流行 空气污染物 微粒 门诊部 气象学 医疗保健 中国 疾病 地理 传染病(医学专业) 内科学 化学 有机化学 考古 经济 经济增长
作者
Xinyao Lian,Xi Lu,Zhong−Song Zhang,Li−Li Yang,Juan Du,Yan Cui,Hong−Jun Li,Wan−Xue Zhang,Chao Wang,Bei Liu,Yuxue Yang,Fuqiang Cui,Qing‐Bin Lu
出处
期刊:Journal of Medical Virology [Wiley]
卷期号:95 (2)
标识
DOI:10.1002/jmv.28514
摘要

Abstract This study aimed to explore the association between air pollutants and outpatient visits for influenza‐like illnesses (ILI) under the coronavirus disease 2019 (COVID‐19) stage in the subcenter of Beijing. The data on ILI in the subcenter of Beijing from January 1, 2018 to December 31, 2020 were obtained from the Beijing Influenza Surveillance Network. A generalized additive Poisson model was applied to examine the associations between the concentrations of air pollutants and daily outpatient visits for ILI when controlling meteorological factors and temporal trend. A total of 171 943 ILI patients were included. In the pre‐coronavirus disease 2019 (COVID‐19) stage, an increased risk of ILI outpatient visits was associated to a high air quality index (AQI) and the high concentrations of particulate matter less than 2.5 (PM 2.5 ), particulate matter 10 (PM 10 ), sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and carbon monoxide (CO), and a low concentration of ozone (O 3 ) on lag0 day and lag1 day, while a higher increased risk of ILI outpatient visits was observed by the air pollutants in the COVID‐19 stage on lag0 day. Except for PM 10 , the concentrations of other air pollutants on lag1 day were not significantly associated with an increased risk of ILI outpatient visits during the COVID‐19 stage. The findings that air pollutants had enhanced immediate effects and diminished lag‐effects on the risk of ILI outpatient visits during the COVID‐19 pandemic, which is important for the development of public health and environmental governance strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助晨曦采纳,获得10
1秒前
0128lun发布了新的文献求助10
1秒前
phd发布了新的文献求助10
2秒前
君无名完成签到 ,获得积分10
2秒前
经年发布了新的文献求助10
2秒前
QXR完成签到,获得积分10
3秒前
豆dou完成签到,获得积分10
3秒前
Dddd发布了新的文献求助10
3秒前
HCl完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
Hollen完成签到 ,获得积分10
7秒前
慕青应助学术蠕虫采纳,获得10
8秒前
8秒前
叶子发布了新的文献求助10
9秒前
orangel完成签到,获得积分10
10秒前
半壶月色半边天完成签到 ,获得积分10
11秒前
tmpstlml发布了新的文献求助10
11秒前
12秒前
12秒前
不安饼干完成签到 ,获得积分10
14秒前
活泼的飞鸟完成签到,获得积分10
14秒前
15秒前
xuyun发布了新的文献求助10
15秒前
15秒前
zzcres完成签到,获得积分10
17秒前
eeeee完成签到 ,获得积分10
17秒前
乐观德地完成签到,获得积分10
18秒前
大个应助yf_zhu采纳,获得10
18秒前
llk发布了新的文献求助10
19秒前
一只大肥猫完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808