果园
激光雷达
成熟度
均方误差
点云
遥感
环境科学
数学
归一化差异植被指数
园艺
植被(病理学)
叶绿素
叶面积指数
植物
地理
统计
成熟
生物
计算机科学
病理
医学
计算机视觉
作者
Nikos Tsoulias,Kowshik Kumar Saha,Manuela Zude-Sasse
标识
DOI:10.1016/j.compag.2022.107611
摘要
A feasible method to analyse fruit at the tree is requested in precise production management. The employment of light detection and ranging (LiDAR) was approached aimed at measuring the number of fruit, quality-related size, and ripeness-related chlorophyll of fruit skin. During fruit development (65 – 130 day after full bloom, DAFB), apples were harvested and analysed in the laboratory (n = 225) with two LiDAR laser scanners measuring at 660 and 905 nm. From these two 3D point clouds, the normalized difference vegetation index (NDVILiDAR) was calculated. The correlation analysis of NDVILiDAR and chemically analysed fruit chlorophyll content showed R2 = 0.81 and RMSE = 3.63 % on the last measuring date, when fruit size reached 76 mm. The method was tested on 3D point clouds of 12 fruit trees measured directly in the orchard, during fruit growth on five measuring dates, and validated with manual fruit analysis in the orchard (n = 4632). Point clouds of individual apples were segmented from 3D point clouds of trees and fruit NDVILiDAR were calculated. The non-invasively obtained field data showed good calibration performance capturing number of fruit, fruit size, fruit NDVILiDAR, and chemically analysed chlorophyll content of R2 = 0.99, R2 = 0.98 with RMSE = 3.02 %, R2 = 0.65 with RMSE = 0.65 %, R2 = 0.78 with RMSE = 1.31 %, respectively, considering the related reference data at last measuring date 130 DAFB. The new approach of non-invasive laser scanning provided physiologically and agronomically valuable time series data on differences in fruit chlorophyll affected by the leaf area to number of fruit and leaf area to fruit fresh mass ratios. Concluding, the method provides a tool for gaining production-relevant plant data for, e.g., crop load management and selective harvesting by harvest robots.
科研通智能强力驱动
Strongly Powered by AbleSci AI