已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis

反褶积 峰度 滤波器(信号处理) 初始化 盲反褶积 自相关 人工智能 计算机科学 启发式 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 数学 统计 计算机视觉 图像(数学) 哲学 语言学 程序设计语言
作者
Yonghao Miao,Chenhui Li,Huifang Shi,Te Han
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:189: 110110-110110 被引量:45
标识
DOI:10.1016/j.ymssp.2023.110110
摘要

Deconvolution methods (DMs) which can adaptively design the filter for the feature extraction is the most effective tool to counteract the effect of the transmission path. Convolutional sparse filter (CSF) as a new deconvolution mode, which transfers the complicated numeric calculation to the simple feature learning for the optimization and solution of the deconvolution filter coefficient using neural network, has a remarkable superiority especially under the heavy noise condition compared with the traditional DMs. Yet, the problems of the filter length selection and the sensibility to random interference largely confine its application. Motived by this, a novel deep network-based maximum correlated kurtosis deconvolution (MCKD-DeNet) is proposed in this paper. Firstly, according to the multiple-inputs way of the neural network, a filter initialization is designed using the Hanning window. With different filters guided by the initialization, a serial of filtered signals is input to learn the fault feature. Secondly, correlated kurtosis, which can simultaneously evaluate the periodicity and impulsiveness of the signal, is chosen as the new cost function to train the neural network. And the input period is estimated between the layers by calculating the autocorrelation of the most informative filtered signal. Subsequently, the component with most fault information is locked as the output of MCKD-DeNet using the proposed dimension reduction method based on the correlation coefficient. Finally, compared with previous CSF and improved maximum correlated kurtosis deconvolution, the proposed MCKD-DeNet is verified to have the performance superiority by simulated signal with different noise levels and interference as well as experimental data collected from wind turbine experiment bench with bearing fault.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美蚂蚁完成签到,获得积分20
1秒前
朝朝发布了新的文献求助10
1秒前
轻松的惜芹应助xiachengcs采纳,获得10
2秒前
科研通AI2S应助夜雨声烦采纳,获得10
3秒前
Lyubb完成签到 ,获得积分10
5秒前
5秒前
在水一方应助Xiaoguo采纳,获得10
5秒前
6秒前
wbh发布了新的文献求助10
12秒前
13秒前
14秒前
悦悦应助兴奋的故事采纳,获得10
16秒前
Hello应助wbh采纳,获得10
18秒前
zzy完成签到,获得积分10
19秒前
李田田发布了新的文献求助10
19秒前
科研通AI5应助梦里格斗家采纳,获得10
20秒前
20秒前
21秒前
25秒前
青蛙的第二滴口水完成签到,获得积分10
28秒前
29秒前
31秒前
31秒前
晾猫人发布了新的文献求助10
33秒前
coffee完成签到 ,获得积分10
35秒前
36秒前
yuan完成签到 ,获得积分10
37秒前
37秒前
38秒前
38秒前
39秒前
Rondab应助龍Ryu采纳,获得30
39秒前
单于笑卉发布了新的文献求助10
41秒前
Jasper应助吉恩采纳,获得10
41秒前
Woaimama724发布了新的文献求助10
42秒前
孟长歌发布了新的文献求助10
43秒前
True发布了新的文献求助10
44秒前
46秒前
甜美无剑应助Helios采纳,获得50
46秒前
含糊的非笑发布了新的文献求助100
46秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994433
求助须知:如何正确求助?哪些是违规求助? 3534839
关于积分的说明 11266585
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749