Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis

反褶积 峰度 滤波器(信号处理) 初始化 盲反褶积 自相关 人工智能 计算机科学 启发式 噪音(视频) 特征(语言学) 模式识别(心理学) 维纳反褶积 算法 数学 统计 计算机视觉 图像(数学) 哲学 语言学 程序设计语言
作者
Yonghao Miao,Chenhui Li,Huifang Shi,Te Han
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:189: 110110-110110 被引量:40
标识
DOI:10.1016/j.ymssp.2023.110110
摘要

Deconvolution methods (DMs) which can adaptively design the filter for the feature extraction is the most effective tool to counteract the effect of the transmission path. Convolutional sparse filter (CSF) as a new deconvolution mode, which transfers the complicated numeric calculation to the simple feature learning for the optimization and solution of the deconvolution filter coefficient using neural network, has a remarkable superiority especially under the heavy noise condition compared with the traditional DMs. Yet, the problems of the filter length selection and the sensibility to random interference largely confine its application. Motived by this, a novel deep network-based maximum correlated kurtosis deconvolution (MCKD-DeNet) is proposed in this paper. Firstly, according to the multiple-inputs way of the neural network, a filter initialization is designed using the Hanning window. With different filters guided by the initialization, a serial of filtered signals is input to learn the fault feature. Secondly, correlated kurtosis, which can simultaneously evaluate the periodicity and impulsiveness of the signal, is chosen as the new cost function to train the neural network. And the input period is estimated between the layers by calculating the autocorrelation of the most informative filtered signal. Subsequently, the component with most fault information is locked as the output of MCKD-DeNet using the proposed dimension reduction method based on the correlation coefficient. Finally, compared with previous CSF and improved maximum correlated kurtosis deconvolution, the proposed MCKD-DeNet is verified to have the performance superiority by simulated signal with different noise levels and interference as well as experimental data collected from wind turbine experiment bench with bearing fault.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子发布了新的文献求助10
刚刚
酷波er应助小芳儿采纳,获得10
1秒前
aixue发布了新的文献求助10
1秒前
1秒前
大气早晨完成签到,获得积分10
1秒前
hhh完成签到,获得积分10
1秒前
阿谭发布了新的文献求助10
2秒前
啦啦啦发布了新的文献求助10
2秒前
3秒前
深情安青应助搜嘎采纳,获得10
3秒前
3秒前
宣墨完成签到,获得积分10
4秒前
彩色嚣完成签到 ,获得积分10
4秒前
D33sama应助含蓄延恶采纳,获得10
5秒前
楼台杏花琴弦完成签到,获得积分10
5秒前
5秒前
庾灭男完成签到,获得积分10
5秒前
5秒前
tt完成签到,获得积分10
5秒前
CYAA发布了新的文献求助20
6秒前
费1发布了新的文献求助10
6秒前
An完成签到,获得积分10
6秒前
梅零落完成签到,获得积分10
7秒前
8秒前
田様应助Cccc小懒采纳,获得10
10秒前
封印完成签到,获得积分10
10秒前
代包子完成签到 ,获得积分20
10秒前
Adel发布了新的文献求助10
10秒前
峒tt发布了新的文献求助10
11秒前
ming123ah完成签到,获得积分10
11秒前
11秒前
狂野的爆米花关注了科研通微信公众号
11秒前
PRAYER1029发布了新的文献求助10
12秒前
14秒前
15秒前
不爱吃韭菜完成签到 ,获得积分10
16秒前
彭于晏应助简单大叔采纳,获得10
16秒前
16秒前
传奇3应助轩辕德地采纳,获得10
18秒前
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157055
求助须知:如何正确求助?哪些是违规求助? 2808405
关于积分的说明 7877451
捐赠科研通 2466898
什么是DOI,文献DOI怎么找? 1313069
科研通“疑难数据库(出版商)”最低求助积分说明 630364
版权声明 601919