Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis

反褶积 峰度 滤波器(信号处理) 初始化 盲反褶积 自相关 人工智能 计算机科学 启发式 噪音(视频) 特征(语言学) 模式识别(心理学) 算法 数学 统计 计算机视觉 图像(数学) 哲学 语言学 程序设计语言
作者
Yonghao Miao,Chenhui Li,Huifang Shi,Te Han
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:189: 110110-110110 被引量:45
标识
DOI:10.1016/j.ymssp.2023.110110
摘要

Deconvolution methods (DMs) which can adaptively design the filter for the feature extraction is the most effective tool to counteract the effect of the transmission path. Convolutional sparse filter (CSF) as a new deconvolution mode, which transfers the complicated numeric calculation to the simple feature learning for the optimization and solution of the deconvolution filter coefficient using neural network, has a remarkable superiority especially under the heavy noise condition compared with the traditional DMs. Yet, the problems of the filter length selection and the sensibility to random interference largely confine its application. Motived by this, a novel deep network-based maximum correlated kurtosis deconvolution (MCKD-DeNet) is proposed in this paper. Firstly, according to the multiple-inputs way of the neural network, a filter initialization is designed using the Hanning window. With different filters guided by the initialization, a serial of filtered signals is input to learn the fault feature. Secondly, correlated kurtosis, which can simultaneously evaluate the periodicity and impulsiveness of the signal, is chosen as the new cost function to train the neural network. And the input period is estimated between the layers by calculating the autocorrelation of the most informative filtered signal. Subsequently, the component with most fault information is locked as the output of MCKD-DeNet using the proposed dimension reduction method based on the correlation coefficient. Finally, compared with previous CSF and improved maximum correlated kurtosis deconvolution, the proposed MCKD-DeNet is verified to have the performance superiority by simulated signal with different noise levels and interference as well as experimental data collected from wind turbine experiment bench with bearing fault.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
跳跃老五完成签到 ,获得积分10
刚刚
刚刚
浪迹天涯完成签到,获得积分10
1秒前
包容的剑发布了新的文献求助10
1秒前
斯文的茹嫣完成签到,获得积分10
1秒前
义气笑容完成签到,获得积分10
1秒前
yufeng完成签到 ,获得积分10
2秒前
2秒前
Jenny完成签到,获得积分10
2秒前
2秒前
科研小小小白完成签到,获得积分10
3秒前
3秒前
小橙子完成签到 ,获得积分10
4秒前
5秒前
5秒前
福娃发布了新的文献求助10
5秒前
6秒前
达斯维完成签到,获得积分10
6秒前
浪迹天涯发布了新的文献求助10
6秒前
今后应助杜嘟嘟采纳,获得30
6秒前
7秒前
7秒前
清圆527完成签到,获得积分10
7秒前
JamesPei应助Zhong采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
9秒前
Emma完成签到 ,获得积分10
10秒前
10秒前
10秒前
清新的问枫完成签到,获得积分10
11秒前
11秒前
在水一方应助大方小白采纳,获得10
11秒前
阿凡达完成签到,获得积分10
11秒前
神勇的雅香应助大方小白采纳,获得10
11秒前
彬彬发布了新的文献求助10
11秒前
刘鹏宇发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740