Representation Learning through Multimodal Attention and Time-Sync Comments for Affective Video Content Analysis

计算机科学 人工智能 代表(政治) 杠杆(统计) 模式 水准点(测量) 特征学习 嵌入 模式识别(心理学) 机器学习 社会学 地理 法学 大地测量学 政治 社会科学 政治学
作者
Jicai Pan,Shangfei Wang,Lin Fang
标识
DOI:10.1145/3503161.3548018
摘要

Although temporal patterns inherent in visual and audio signals are crucial for affective video content analysis, they have not been thoroughly explored yet. In this paper, we propose a novel Temporal-Aware Multimodal (TAM) method to fully capture the temporal information. Specifically, we design a cross-temporal multimodal fusion module that applies attention-based fusion to different modalities within and across video segments. As a result, it fully captures the temporal relations between different modalities. Furthermore, a single emotion label lacks supervision for learning representation of each segment, making temporal pattern mining difficult. We leverage time-synchronized comments (TSCs) as auxiliary supervision, since these comments are easily accessible and contain rich emotional cues. Two TSC-based self-supervised tasks are designed: the first aims to predict the emotional words in a TSC from video representation and TSC contextual semantics, and the second predicts the segment in which the TSC appears by calculating the correlation between video representation and TSC embedding. These self-supervised tasks are used to pre-train the cross-temporal multimodal fusion module on a large-scale video-TSC dataset, which is crawled from the web without labeling costs. These self-supervised pre-training tasks prompt the fusion module to perform representation learning on segments including TSC, thus capturing more temporal affective patterns. Experimental results on three benchmark datasets show that the proposed fusion module achieves state-of-the-art results in affective video content analysis. Ablation studies verify that after TSC-based pre-training, the fusion module learns more segments' affective patterns and achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心夏旋完成签到,获得积分10
刚刚
嘞是举仔应助专注的草丛采纳,获得20
1秒前
好好好完成签到,获得积分10
1秒前
洁净如音完成签到,获得积分10
1秒前
wheeler1发布了新的文献求助10
1秒前
浮云发布了新的文献求助30
2秒前
2秒前
2秒前
Redamancy完成签到,获得积分10
3秒前
盒子完成签到,获得积分20
3秒前
开心夏旋发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
刘耀威完成签到,获得积分20
7秒前
啦11发布了新的文献求助10
7秒前
7秒前
8秒前
传奇3应助浮云采纳,获得10
8秒前
8秒前
情怀应助玩命的糖豆采纳,获得10
8秒前
8秒前
酷波er应助清新的秋白采纳,获得10
8秒前
元谷雪发布了新的文献求助10
9秒前
whiteside完成签到,获得积分10
9秒前
10秒前
Andd发布了新的文献求助10
10秒前
11秒前
植物园完成签到,获得积分10
12秒前
12秒前
ruirui发布了新的文献求助30
12秒前
无花果应助QP采纳,获得10
12秒前
曾经友琴发布了新的文献求助10
12秒前
复杂访冬发布了新的文献求助10
13秒前
左秋白发布了新的文献求助10
13秒前
whiteside发布了新的文献求助10
13秒前
保藏完成签到,获得积分10
13秒前
坚强金鱼发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420