清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Representation Learning through Multimodal Attention and Time-Sync Comments for Affective Video Content Analysis

计算机科学 人工智能 代表(政治) 杠杆(统计) 模式 水准点(测量) 特征学习 嵌入 模式识别(心理学) 机器学习 社会学 地理 法学 大地测量学 政治 社会科学 政治学
作者
Jicai Pan,Shangfei Wang,Lin Fang
标识
DOI:10.1145/3503161.3548018
摘要

Although temporal patterns inherent in visual and audio signals are crucial for affective video content analysis, they have not been thoroughly explored yet. In this paper, we propose a novel Temporal-Aware Multimodal (TAM) method to fully capture the temporal information. Specifically, we design a cross-temporal multimodal fusion module that applies attention-based fusion to different modalities within and across video segments. As a result, it fully captures the temporal relations between different modalities. Furthermore, a single emotion label lacks supervision for learning representation of each segment, making temporal pattern mining difficult. We leverage time-synchronized comments (TSCs) as auxiliary supervision, since these comments are easily accessible and contain rich emotional cues. Two TSC-based self-supervised tasks are designed: the first aims to predict the emotional words in a TSC from video representation and TSC contextual semantics, and the second predicts the segment in which the TSC appears by calculating the correlation between video representation and TSC embedding. These self-supervised tasks are used to pre-train the cross-temporal multimodal fusion module on a large-scale video-TSC dataset, which is crawled from the web without labeling costs. These self-supervised pre-training tasks prompt the fusion module to perform representation learning on segments including TSC, thus capturing more temporal affective patterns. Experimental results on three benchmark datasets show that the proposed fusion module achieves state-of-the-art results in affective video content analysis. Ablation studies verify that after TSC-based pre-training, the fusion module learns more segments' affective patterns and achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
奶奶的龙应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
18秒前
xiang完成签到,获得积分20
47秒前
1分钟前
2分钟前
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
奶奶的龙应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
hu完成签到,获得积分10
2分钟前
2分钟前
2分钟前
hu发布了新的文献求助10
2分钟前
2分钟前
2分钟前
大雁完成签到 ,获得积分0
3分钟前
老老熊完成签到,获得积分10
3分钟前
Una完成签到,获得积分10
3分钟前
合作完成签到 ,获得积分10
3分钟前
欣欣完成签到,获得积分10
3分钟前
一天完成签到 ,获得积分10
3分钟前
甜甜的静柏完成签到 ,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
奶奶的龙应助科研通管家采纳,获得30
4分钟前
sujingbo完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
你好完成签到 ,获得积分10
5分钟前
5分钟前
结实的寒梦完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
尚青华完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755732
求助须知:如何正确求助?哪些是违规求助? 5498033
关于积分的说明 15381526
捐赠科研通 4893640
什么是DOI,文献DOI怎么找? 2632305
邀请新用户注册赠送积分活动 1580173
关于科研通互助平台的介绍 1536016