Representation Learning through Multimodal Attention and Time-Sync Comments for Affective Video Content Analysis

计算机科学 人工智能 代表(政治) 杠杆(统计) 模式 水准点(测量) 特征学习 嵌入 模式识别(心理学) 机器学习 社会学 地理 法学 大地测量学 政治 社会科学 政治学
作者
Jicai Pan,Shangfei Wang,Lin Fang
标识
DOI:10.1145/3503161.3548018
摘要

Although temporal patterns inherent in visual and audio signals are crucial for affective video content analysis, they have not been thoroughly explored yet. In this paper, we propose a novel Temporal-Aware Multimodal (TAM) method to fully capture the temporal information. Specifically, we design a cross-temporal multimodal fusion module that applies attention-based fusion to different modalities within and across video segments. As a result, it fully captures the temporal relations between different modalities. Furthermore, a single emotion label lacks supervision for learning representation of each segment, making temporal pattern mining difficult. We leverage time-synchronized comments (TSCs) as auxiliary supervision, since these comments are easily accessible and contain rich emotional cues. Two TSC-based self-supervised tasks are designed: the first aims to predict the emotional words in a TSC from video representation and TSC contextual semantics, and the second predicts the segment in which the TSC appears by calculating the correlation between video representation and TSC embedding. These self-supervised tasks are used to pre-train the cross-temporal multimodal fusion module on a large-scale video-TSC dataset, which is crawled from the web without labeling costs. These self-supervised pre-training tasks prompt the fusion module to perform representation learning on segments including TSC, thus capturing more temporal affective patterns. Experimental results on three benchmark datasets show that the proposed fusion module achieves state-of-the-art results in affective video content analysis. Ablation studies verify that after TSC-based pre-training, the fusion module learns more segments' affective patterns and achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任媛媛完成签到,获得积分20
2秒前
6秒前
田奋完成签到,获得积分10
6秒前
张西西发布了新的文献求助10
6秒前
安等暖阳完成签到 ,获得积分10
6秒前
6秒前
IvyLee发布了新的文献求助10
7秒前
8秒前
garatasari发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
儒雅盼曼发布了新的文献求助10
14秒前
zxx完成签到 ,获得积分10
14秒前
皮皮卡完成签到,获得积分10
15秒前
哈哈镜阿姐完成签到,获得积分10
16秒前
杰小瑞发布了新的文献求助30
17秒前
17秒前
落寞凌波应助柠萌酸循环采纳,获得10
18秒前
18秒前
19秒前
lwy完成签到,获得积分10
19秒前
Xwu发布了新的文献求助10
19秒前
19秒前
Hello应助奋斗采纳,获得30
20秒前
21秒前
22秒前
桐桐应助卤蛋今天没学习采纳,获得10
22秒前
勤奋的火龙果完成签到 ,获得积分10
22秒前
王欧尼完成签到,获得积分10
23秒前
欢呼的渊思完成签到,获得积分10
23秒前
景穆发布了新的文献求助10
23秒前
Yxian完成签到,获得积分10
23秒前
Akim应助garatasari采纳,获得10
24秒前
李爱国应助聂落雁采纳,获得10
25秒前
comic发布了新的文献求助10
25秒前
26秒前
perseverance发布了新的文献求助10
26秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998808
求助须知:如何正确求助?哪些是违规求助? 3538300
关于积分的说明 11273823
捐赠科研通 3277274
什么是DOI,文献DOI怎么找? 1807487
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075