Representation Learning through Multimodal Attention and Time-Sync Comments for Affective Video Content Analysis

计算机科学 人工智能 代表(政治) 杠杆(统计) 模式 水准点(测量) 特征学习 嵌入 模式识别(心理学) 机器学习 社会学 地理 法学 大地测量学 政治 社会科学 政治学
作者
Jicai Pan,Shangfei Wang,Lin Fang
标识
DOI:10.1145/3503161.3548018
摘要

Although temporal patterns inherent in visual and audio signals are crucial for affective video content analysis, they have not been thoroughly explored yet. In this paper, we propose a novel Temporal-Aware Multimodal (TAM) method to fully capture the temporal information. Specifically, we design a cross-temporal multimodal fusion module that applies attention-based fusion to different modalities within and across video segments. As a result, it fully captures the temporal relations between different modalities. Furthermore, a single emotion label lacks supervision for learning representation of each segment, making temporal pattern mining difficult. We leverage time-synchronized comments (TSCs) as auxiliary supervision, since these comments are easily accessible and contain rich emotional cues. Two TSC-based self-supervised tasks are designed: the first aims to predict the emotional words in a TSC from video representation and TSC contextual semantics, and the second predicts the segment in which the TSC appears by calculating the correlation between video representation and TSC embedding. These self-supervised tasks are used to pre-train the cross-temporal multimodal fusion module on a large-scale video-TSC dataset, which is crawled from the web without labeling costs. These self-supervised pre-training tasks prompt the fusion module to perform representation learning on segments including TSC, thus capturing more temporal affective patterns. Experimental results on three benchmark datasets show that the proposed fusion module achieves state-of-the-art results in affective video content analysis. Ablation studies verify that after TSC-based pre-training, the fusion module learns more segments' affective patterns and achieves better performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杀手小鸡发布了新的文献求助10
1秒前
探索小新完成签到,获得积分10
1秒前
ciciyu发布了新的文献求助10
2秒前
zhangyueyue完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
小陈1122完成签到,获得积分10
4秒前
热心树叶发布了新的文献求助10
5秒前
6秒前
6秒前
gongyanqing完成签到,获得积分10
7秒前
8秒前
简单十三完成签到,获得积分10
9秒前
梦影发布了新的文献求助10
10秒前
科研通AI6应助秋日繁星采纳,获得10
11秒前
wanci应助香蕉秋蝶采纳,获得10
11秒前
11秒前
12秒前
12秒前
Gyz完成签到,获得积分10
12秒前
BowieHuang应助调皮的滑板采纳,获得10
13秒前
13秒前
Otter发布了新的文献求助10
14秒前
爆米花应助dakjdia采纳,获得10
14秒前
朱一龙完成签到,获得积分10
15秒前
16秒前
16秒前
多多指教完成签到,获得积分10
17秒前
幼儿园老大完成签到,获得积分10
17秒前
小陈1122发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
wzjs发布了新的文献求助10
19秒前
不配.应助hky采纳,获得80
20秒前
浮游应助Ivy采纳,获得10
21秒前
22秒前
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075