DHHN: Dual Hierarchical Hybrid Network for Weakly-Supervised Audio-Visual Video Parsing

计算机科学 解析 模式 人工智能 背景(考古学) 任务(项目管理) 语义学(计算机科学) 事件(粒子物理) 上下文模型 机器学习 语音识别 自然语言处理 对象(语法) 古生物学 社会科学 物理 管理 量子力学 社会学 经济 生物 程序设计语言
作者
Xun Jiang,Xing Xu,Zhiguo Chen,Jingran Zhang,Jingkuan Song,Fumin Shen,Huimin Lu,Heng Tao Shen
标识
DOI:10.1145/3503161.3548309
摘要

The Weakly-Supervised Audio-Visual Video Parsing (AVVP) task aims to parse a video into temporal segments and predict their event categories in terms of modalities, labeling them as either audible, visible, or both. Since the temporal boundaries and modalities annotations are not provided, only video-level event labels are available, this task is more challenging than conventional video understanding tasks.Most previous works attempt to analyze videos by jointly modeling the audio and video data and then learning information from the segment-level features with fixed lengths. However, such a design exist two defects: 1) The various semantic information hidden in temporal lengths is neglected, which may lead the models to learn incorrect information; 2) Due to the joint context modeling, the unique features of different modalities are not fully explored. In this paper, we propose a novel AVVP framework termedDual Hierarchical Hybrid Network (DHHN) to tackle the above two problems. Our DHHN method consists of three components: 1) A hierarchical context modeling network for extracting different semantics in multiple temporal lengths; 2) A modality-wise guiding network for learning unique information from different modalities; 3) A dual-stream framework generating audio and visual predictions separately. It maintains the best adaptions on different modalities, further boosting the video parsing performance. Extensive quantitative and qualitative experiments demonstrate that our proposed method establishes the new state-of-the-art performance on the AVVP task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
布丁果冻完成签到,获得积分10
刚刚
1秒前
2秒前
gcl应助hhllhh采纳,获得30
2秒前
2秒前
Charlie发布了新的文献求助20
3秒前
Jian发布了新的文献求助10
4秒前
hu完成签到,获得积分10
5秒前
皮皮卡发布了新的文献求助10
6秒前
聪慧烙完成签到,获得积分10
6秒前
8秒前
9秒前
zorro3574发布了新的文献求助10
9秒前
yar应助整齐灵阳采纳,获得10
11秒前
明明明完成签到,获得积分10
12秒前
linxy发布了新的文献求助10
13秒前
muyi完成签到,获得积分10
14秒前
Orange应助三物采纳,获得10
16秒前
薄荷微凉完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
19秒前
21秒前
Orange应助zorro3574采纳,获得10
21秒前
VLH发布了新的文献求助10
22秒前
yydragen应助lixinlong采纳,获得10
24秒前
28秒前
熊熊发布了新的文献求助10
28秒前
11完成签到,获得积分10
29秒前
29秒前
30秒前
苹果井发布了新的文献求助10
30秒前
30秒前
coolkid应助hhllhh采纳,获得10
31秒前
butaishao发布了新的文献求助10
31秒前
彭于晏应助文欣采纳,获得10
33秒前
微笑寻凝发布了新的文献求助10
33秒前
六月完成签到,获得积分10
34秒前
34秒前
34秒前
huhuhuhu完成签到,获得积分20
34秒前
GingerF应助知性的从雪采纳,获得50
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019