重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

DHHN: Dual Hierarchical Hybrid Network for Weakly-Supervised Audio-Visual Video Parsing

计算机科学 解析 模式 人工智能 背景(考古学) 任务(项目管理) 语义学(计算机科学) 事件(粒子物理) 上下文模型 机器学习 语音识别 自然语言处理 对象(语法) 古生物学 社会科学 物理 管理 量子力学 社会学 经济 生物 程序设计语言
作者
Xun Jiang,Xing Xu,Zhiguo Chen,Jingran Zhang,Jingkuan Song,Fumin Shen,Huimin Lu,Heng Tao Shen
标识
DOI:10.1145/3503161.3548309
摘要

The Weakly-Supervised Audio-Visual Video Parsing (AVVP) task aims to parse a video into temporal segments and predict their event categories in terms of modalities, labeling them as either audible, visible, or both. Since the temporal boundaries and modalities annotations are not provided, only video-level event labels are available, this task is more challenging than conventional video understanding tasks.Most previous works attempt to analyze videos by jointly modeling the audio and video data and then learning information from the segment-level features with fixed lengths. However, such a design exist two defects: 1) The various semantic information hidden in temporal lengths is neglected, which may lead the models to learn incorrect information; 2) Due to the joint context modeling, the unique features of different modalities are not fully explored. In this paper, we propose a novel AVVP framework termedDual Hierarchical Hybrid Network (DHHN) to tackle the above two problems. Our DHHN method consists of three components: 1) A hierarchical context modeling network for extracting different semantics in multiple temporal lengths; 2) A modality-wise guiding network for learning unique information from different modalities; 3) A dual-stream framework generating audio and visual predictions separately. It maintains the best adaptions on different modalities, further boosting the video parsing performance. Extensive quantitative and qualitative experiments demonstrate that our proposed method establishes the new state-of-the-art performance on the AVVP task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助jing采纳,获得30
1秒前
秋雨潇潇发布了新的文献求助10
1秒前
科研通AI6应助叶叶采纳,获得10
2秒前
平安顺遂发布了新的文献求助10
2秒前
3秒前
李健应助yqf采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
莉莉斯发布了新的文献求助30
4秒前
zhq发布了新的文献求助10
4秒前
4秒前
aki应助乌鸡国国王采纳,获得10
4秒前
王易云发布了新的文献求助10
5秒前
yanj520925发布了新的文献求助10
5秒前
小二郎应助迅速如柏采纳,获得10
5秒前
5秒前
小粉丝完成签到,获得积分10
6秒前
7秒前
科研通AI6应助幸福乐蕊采纳,获得10
8秒前
8秒前
xy发布了新的文献求助10
9秒前
李健应助111采纳,获得10
9秒前
9秒前
9秒前
领导范儿应助Li采纳,获得10
10秒前
汪格森发布了新的文献求助10
12秒前
12秒前
郭素玲发布了新的文献求助10
12秒前
jing发布了新的文献求助30
13秒前
xueyu发布了新的文献求助10
13秒前
风清扬发布了新的文献求助30
13秒前
哭泣灯泡应助ll采纳,获得10
14秒前
kuoh224发布了新的文献求助10
17秒前
17秒前
18秒前
Tonson应助杆杆采纳,获得10
18秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707