RKformer: Runge-Kutta Transformer with Random-Connection Attention for Infrared Small Target Detection

计算机科学 人工智能 编码器 像素 地点 变压器 模式识别(心理学) 算法 计算机视觉 理论计算机科学 哲学 语言学 物理 量子力学 电压 操作系统
作者
Mingjin Zhang,Haichen Bai,Jing Zhang,Rui Zhang,Chaoyue Wang,Jie Guo,Xinbo Gao
标识
DOI:10.1145/3503161.3547817
摘要

Infrared small target detection (IRSTD) refers to segmenting the small targets from infrared images, which is of great significance in practical applications. However, due to the small scale of targets as well as noise and clutter in the background, current deep neural network-based methods struggle in extracting features with discriminative semantics while preserving fine details. In this paper, we address this problem by proposing a novel RKformer model with an encoder-decoder structure, where four specifically designed Runge-Kutta transformer (RKT) blocks are stacked sequentially in the encoder. Technically, it has three key designs. First, we adopt a parallel encoder block (PEB) of the transformer and convolution to take their advantages in long-range dependency modeling and locality modeling for extracting semantics and preserving details. Second, we propose a novel random-connection attention (RCA) block, which has a reservoir structure to learn sparse attention via random connections during training. RCA encourages the target to attend to sparse relevant positions instead of all the large-area background pixels, resulting in more informative attention scores. It has fewer parameters and computations than the original self-attention in the transformer while performing better. Third, inspired by neural ordinary differential equations (ODE), we stack two PEBs with several residual connections as the basic encoder block to implement the Runge-Kutta method for solving ODE, which can effectively enhance the feature and suppress noise. Experiments on the public NUAA-SIRST dataset and IRSTD-1k dataset demonstrate the superiority of the RKformer over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Ferry发布了新的文献求助20
2秒前
摆哥发布了新的文献求助10
3秒前
深情安青应助叶子采纳,获得10
4秒前
qwq发布了新的文献求助10
5秒前
raojingwen完成签到 ,获得积分10
6秒前
朴实的绿蝶完成签到,获得积分10
6秒前
yishuihan发布了新的文献求助30
6秒前
Gxmmmm_应助fantasy采纳,获得50
6秒前
7秒前
8秒前
科研通AI5应助wuy采纳,获得10
8秒前
小欣发布了新的文献求助10
8秒前
elizabeth339发布了新的文献求助10
8秒前
Ava应助123采纳,获得10
9秒前
李鑫完成签到,获得积分10
10秒前
浮游应助朴实的绿蝶采纳,获得10
10秒前
想上985完成签到 ,获得积分10
10秒前
肖肖发布了新的文献求助10
10秒前
zyb完成签到 ,获得积分10
11秒前
浮游应助爱听歌笑寒采纳,获得10
12秒前
14秒前
16秒前
16秒前
18秒前
pp发布了新的文献求助10
19秒前
19秒前
白山茶应助红炉点血采纳,获得10
20秒前
Marvel发布了新的文献求助10
20秒前
Gxmmmm_应助HJJHJH采纳,获得10
21秒前
21秒前
bioglia完成签到,获得积分10
21秒前
肖肖完成签到,获得积分10
21秒前
斯文败类应助香茶菜甲素采纳,获得10
21秒前
王甜甜发布了新的文献求助10
23秒前
叶子发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
杨昊轩发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179