RKformer: Runge-Kutta Transformer with Random-Connection Attention for Infrared Small Target Detection

计算机科学 人工智能 编码器 像素 地点 变压器 模式识别(心理学) 算法 计算机视觉 理论计算机科学 哲学 语言学 物理 量子力学 电压 操作系统
作者
Mingjin Zhang,Haichen Bai,Jing Zhang,Rui Zhang,Chaoyue Wang,Jie Guo,Xinbo Gao
标识
DOI:10.1145/3503161.3547817
摘要

Infrared small target detection (IRSTD) refers to segmenting the small targets from infrared images, which is of great significance in practical applications. However, due to the small scale of targets as well as noise and clutter in the background, current deep neural network-based methods struggle in extracting features with discriminative semantics while preserving fine details. In this paper, we address this problem by proposing a novel RKformer model with an encoder-decoder structure, where four specifically designed Runge-Kutta transformer (RKT) blocks are stacked sequentially in the encoder. Technically, it has three key designs. First, we adopt a parallel encoder block (PEB) of the transformer and convolution to take their advantages in long-range dependency modeling and locality modeling for extracting semantics and preserving details. Second, we propose a novel random-connection attention (RCA) block, which has a reservoir structure to learn sparse attention via random connections during training. RCA encourages the target to attend to sparse relevant positions instead of all the large-area background pixels, resulting in more informative attention scores. It has fewer parameters and computations than the original self-attention in the transformer while performing better. Third, inspired by neural ordinary differential equations (ODE), we stack two PEBs with several residual connections as the basic encoder block to implement the Runge-Kutta method for solving ODE, which can effectively enhance the feature and suppress noise. Experiments on the public NUAA-SIRST dataset and IRSTD-1k dataset demonstrate the superiority of the RKformer over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助张雅露采纳,获得10
刚刚
akakns完成签到,获得积分10
刚刚
da发布了新的文献求助10
刚刚
刚刚
红箭烟雨发布了新的文献求助10
2秒前
3秒前
3秒前
陈仲完成签到,获得积分10
3秒前
4秒前
加快步伐发布了新的文献求助10
6秒前
7秒前
7秒前
Lucas应助粥粥采纳,获得30
7秒前
8秒前
XT完成签到,获得积分10
9秒前
9秒前
寒假工完成签到 ,获得积分10
9秒前
9秒前
10秒前
11秒前
李某发布了新的文献求助10
12秒前
12秒前
所所应助Somebody采纳,获得10
12秒前
12秒前
wzgkeyantong完成签到,获得积分10
13秒前
yxy发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
yyyyyyy发布了新的文献求助10
15秒前
XT发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Owen应助aaa采纳,获得10
16秒前
piranha发布了新的文献求助10
17秒前
17秒前
小猪佩奇发布了新的文献求助10
17秒前
张雅露发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182