RKformer: Runge-Kutta Transformer with Random-Connection Attention for Infrared Small Target Detection

计算机科学 人工智能 编码器 像素 地点 变压器 模式识别(心理学) 算法 计算机视觉 理论计算机科学 哲学 语言学 物理 量子力学 电压 操作系统
作者
Mingjin Zhang,Haichen Bai,Jing Zhang,Rui Zhang,Chaoyue Wang,Jie Guo,Xinbo Gao
标识
DOI:10.1145/3503161.3547817
摘要

Infrared small target detection (IRSTD) refers to segmenting the small targets from infrared images, which is of great significance in practical applications. However, due to the small scale of targets as well as noise and clutter in the background, current deep neural network-based methods struggle in extracting features with discriminative semantics while preserving fine details. In this paper, we address this problem by proposing a novel RKformer model with an encoder-decoder structure, where four specifically designed Runge-Kutta transformer (RKT) blocks are stacked sequentially in the encoder. Technically, it has three key designs. First, we adopt a parallel encoder block (PEB) of the transformer and convolution to take their advantages in long-range dependency modeling and locality modeling for extracting semantics and preserving details. Second, we propose a novel random-connection attention (RCA) block, which has a reservoir structure to learn sparse attention via random connections during training. RCA encourages the target to attend to sparse relevant positions instead of all the large-area background pixels, resulting in more informative attention scores. It has fewer parameters and computations than the original self-attention in the transformer while performing better. Third, inspired by neural ordinary differential equations (ODE), we stack two PEBs with several residual connections as the basic encoder block to implement the Runge-Kutta method for solving ODE, which can effectively enhance the feature and suppress noise. Experiments on the public NUAA-SIRST dataset and IRSTD-1k dataset demonstrate the superiority of the RKformer over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
龙行天下发布了新的文献求助10
3秒前
leslieo3o发布了新的文献求助10
3秒前
华仔应助会会采纳,获得10
5秒前
小悦完成签到 ,获得积分10
5秒前
5秒前
5秒前
的荟发布了新的文献求助10
7秒前
living笑白完成签到,获得积分10
7秒前
哇哈哈123给哇哈哈123的求助进行了留言
7秒前
Heisenberg完成签到,获得积分10
7秒前
光亮的满天完成签到,获得积分10
7秒前
7秒前
斑驳发布了新的文献求助10
8秒前
8秒前
冬初完成签到,获得积分20
8秒前
郭晓璇发布了新的文献求助10
10秒前
11秒前
旷野完成签到 ,获得积分10
11秒前
武劲研完成签到,获得积分10
12秒前
王富贵完成签到,获得积分10
12秒前
Curiosity发布了新的文献求助10
12秒前
dol发布了新的文献求助10
13秒前
布蓝图完成签到 ,获得积分10
13秒前
13秒前
搜集达人应助haha采纳,获得10
13秒前
凝心完成签到,获得积分10
14秒前
星辰大海应助龙行天下采纳,获得10
14秒前
key完成签到,获得积分10
15秒前
Herrr发布了新的文献求助10
15秒前
Orange应助KKK采纳,获得10
15秒前
hh完成签到,获得积分10
16秒前
18秒前
陈秋发布了新的文献求助10
18秒前
吱吱熊sama发布了新的文献求助10
19秒前
只想躺平完成签到,获得积分10
20秒前
风中冰香应助凝心采纳,获得10
20秒前
21秒前
深情安青应助ocean采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169