Artificial intelligence analysis of ECG signals to predict arrhythmia recurrence after cryoballoon ablation of atrial fibrillation

医学 内科学 心脏病学 心房颤动 射血分数 窦性心律 心室 肺静脉 射频消融术 烧蚀 心电图 心力衰竭
作者
Grzegorz Warmiński,Łukasz Kalińczuk,Michał Orczykowski,Piotr Urbanek,Robert Bodalski,Kamil Zieliński,Michał Gandor,F.M. Palka,M Jaworski,Gary S. Mintz,Ilona Kowalik,Andrzej Hasiec,Maria Bilińska,Paweł Pławiak,Łukasz Szumowski
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:43 (Supplement_2) 被引量:1
标识
DOI:10.1093/eurheartj/ehac544.559
摘要

Abstract Introduction Cryoballoon-based pulmonary vein isolation (CB) is an effective option for rhythm control in atrial fibrillation (AF). There have been multiple attempts to predict arrhythmia recurrence, but with moderate success. Purpose To use artificial intelligence (AI) deep electrocardiogram (ECG) analysis to predict arrythmia recurrence after CB. Methods In a single-center study of 250 consecutive pts (58.2±12.6 years, 30% female) treated with CB for AF (05.2017–04.2019), 60% had paroxysmal AF (PAF), 66.5% had hypertension, and 27.2% had a redo CB. Analyses included left atrial volume (LA vol: indexed for BSA and assed by angio-MSCT in 76% and the rest with echo), left ventricle ejection fraction (LVEF) and hypertrophy (LVH: septal/posterior wall thickness ≥11mm in ♂ and ≥10mm in ♀) along with 30s arrhythmia recurrence at 2-yr follow-up. Baseline 500Hz raw 12-lead digital ECG signals were analyzed by means of convolutional neural network (CNN) architecture that was taught to process the 12-channel ECG signal (XML). The transfer learning method of CNN parameters learned on a very large number of coded consecutive training ECG samples (n=1,000) was adopted to analyze current sample of ECG signals. Results Arrhythmia recurrence at 2-yrs was 46.0% (n=115). There was gradual increase in predictive performance being the lowest if only baseline clinical data were analyzed and the highest combing all baseline clinical data plus anatomical and functional parameters (Table 1: #1–#3). AI baseline ECG analysis alone offered predictive performance similar to that made upon analysis of all baseline clinical data or joint analysis of LA vol, LVH, and LVEF (Table 1: #4). AI results added substantially to predictive performance of models using baseline clinical data alone (#1 vs #5, p<0.001) and joint analysis of baseline clinical plus LA vol, LVH and LVEF (#3 vs #6, p=0.0130) (Fig. 1). Conclusions Prediction of recurrence after CB using raw ECG data with deep AI analysis is feasible. Joint analysis of results of AI of baseline ECG and basic clinical data offers predictive performance similar to that made upon analysis of clinical data including advanced information on LA volume and LVH and function. AI analysis of baseline ECG adds significantly to models aimed at recurrent AF prediction. Funding Acknowledgement Type of funding sources: Public hospital(s). Main funding source(s): National Institute of Cardiology, Warsaw, Poland

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和平使命应助科研通管家采纳,获得10
14秒前
16秒前
小学生学免疫完成签到 ,获得积分10
16秒前
直率无春完成签到,获得积分10
23秒前
程程完成签到,获得积分10
24秒前
佟语雪完成签到,获得积分10
24秒前
26秒前
yiyiy9发布了新的文献求助10
29秒前
yiyiy9完成签到,获得积分10
37秒前
伶俐的语雪完成签到,获得积分10
39秒前
课呢完成签到,获得积分10
48秒前
优雅的千雁完成签到,获得积分10
56秒前
李凤凤完成签到 ,获得积分10
56秒前
雪雪完成签到 ,获得积分10
58秒前
柠栀完成签到 ,获得积分10
59秒前
chhzz完成签到 ,获得积分10
1分钟前
glanceofwind完成签到 ,获得积分10
1分钟前
unicornfly完成签到,获得积分10
1分钟前
zodiac完成签到,获得积分0
1分钟前
我爱康康文献完成签到 ,获得积分10
1分钟前
lightman完成签到,获得积分10
1分钟前
葶ting完成签到 ,获得积分10
1分钟前
小张完成签到 ,获得积分10
1分钟前
kuyi完成签到 ,获得积分10
1分钟前
FUNG完成签到 ,获得积分10
1分钟前
严剑封完成签到,获得积分10
1分钟前
阔达白筠完成签到 ,获得积分10
1分钟前
小路完成签到,获得积分10
1分钟前
mengmenglv完成签到 ,获得积分0
1分钟前
Dearjw1655完成签到,获得积分10
1分钟前
bellapp完成签到,获得积分10
2分钟前
海孩子完成签到,获得积分10
2分钟前
陈皮完成签到 ,获得积分10
2分钟前
郜雨寒发布了新的文献求助10
2分钟前
乐悠悠完成签到 ,获得积分10
2分钟前
2分钟前
manchang完成签到 ,获得积分10
2分钟前
蓝意完成签到,获得积分0
2分钟前
郜雨寒完成签到,获得积分10
2分钟前
SHEEPMEN完成签到,获得积分10
2分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3326800
求助须知:如何正确求助?哪些是违规求助? 2957144
关于积分的说明 8583457
捐赠科研通 2635044
什么是DOI,文献DOI怎么找? 1442338
科研通“疑难数据库(出版商)”最低求助积分说明 668210
邀请新用户注册赠送积分活动 655102