Development and validation of medical record-based logistic regression and machine learning models to diagnose diabetic retinopathy

医学 逻辑回归 接收机工作特性 糖尿病性视网膜病变 队列 全国健康与营养检查调查 内科学 糖尿病 人口 内分泌学 环境卫生
作者
He-Yan Li,Li Dong,Wen-Da Zhou,Hao-Tian Wu,Rui-Heng Zhang,Yi-Tong Li,Chu-Yao Yu,Wen Bin Wei
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Nature]
标识
DOI:10.1007/s00417-022-05854-9
摘要

PurposesMany factors were reported to be associated with diabetic retinopathy (DR); however, their contributions remained unclear. We aimed to evaluate the prognostic and diagnostic accuracy of logistic regression and three machine learning models based on various medical records.MethodsThis was a cross-sectional study. We investigated the prevalence and associations of DR among 757 participants aged 40 years or older in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). We trained the models to predict if the participants had DR with 15 predictor variables. Area under the receiver operating characteristic (AUROC) and mean squared error (MSE) of each algorithm were compared in the external validation dataset using a replicate cohort from NHANES 2007–2008.ResultsAmong the 757 participants, 53 (7.00%) subjects had DR, the mean (standard deviation, SD) age was 57.7 (13.04), and 78.0% were male (n = 42). Logistic regression revealed that female gender (OR = 4.130, 95% CI: 1.820–9.380; P < 0.05), HbA1c (OR = 1.665, 95% CI: 1.197–2.317; P < 0.05), serum creatine level (OR = 2.952, 95% CI: 1.274–6.851; P < 0.05), and eGFR level (OR = 1.009, 95% CI: 1.000–1.014, P < 0.05) increased the risk of DR. The average performance obtained from internal validation was similar in all models (AUROC ≥ 0.945), and k-nearest neighbors (KNN) had the highest value with an AUROC of 0.984. In external validation, they remained robust or with modest reductions in discrimination with AUROC still ≥ 0.902, and KNN also performed the best with an AUROC of 0.982. Both logistic regression and machine learning models had good performance in the clinical diagnosis of DR.ConclusionsThis study highlights the utility of comparing traditional logistic regression to machine learning models. We found that logistic regression performed as well as optimized machine learning methods when classifying DR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wei完成签到 ,获得积分10
2秒前
SSDlk应助科研通管家采纳,获得10
4秒前
独特的绿蝶完成签到,获得积分10
4秒前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
5秒前
9秒前
12秒前
daydayup完成签到 ,获得积分10
12秒前
Yelanjiao发布了新的文献求助10
14秒前
苦咖啡发布了新的文献求助10
19秒前
小学生学免疫完成签到 ,获得积分10
26秒前
Gary完成签到 ,获得积分10
28秒前
笨笨青筠完成签到 ,获得积分10
29秒前
star完成签到,获得积分10
29秒前
绿袖子完成签到,获得积分10
31秒前
35秒前
嘻嘻哈哈完成签到 ,获得积分10
35秒前
雨相所至发布了新的文献求助10
39秒前
Carrol完成签到,获得积分10
40秒前
令狐新竹完成签到 ,获得积分10
43秒前
44秒前
dypdyp完成签到 ,获得积分10
44秒前
雨相所至完成签到,获得积分10
45秒前
吱吱吱完成签到 ,获得积分10
45秒前
安静发布了新的文献求助30
50秒前
tmpstlml完成签到 ,获得积分10
52秒前
golfgold完成签到,获得积分10
55秒前
zenabia完成签到 ,获得积分10
56秒前
skyleon完成签到,获得积分10
56秒前
风不尽,树不静完成签到 ,获得积分10
59秒前
嘉子完成签到 ,获得积分10
59秒前
efren1806完成签到,获得积分10
1分钟前
Oliver完成签到 ,获得积分10
1分钟前
寇婧怡完成签到 ,获得积分10
1分钟前
1分钟前
iNk应助Wang采纳,获得10
1分钟前
xue112完成签到 ,获得积分10
1分钟前
GuMingyang完成签到,获得积分10
1分钟前
WXM完成签到 ,获得积分0
1分钟前
紫罗兰花海完成签到 ,获得积分10
1分钟前
小井盖完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590856
求助须知:如何正确求助?哪些是违规求助? 3159197
关于积分的说明 9522154
捐赠科研通 2862140
什么是DOI,文献DOI怎么找? 1572954
邀请新用户注册赠送积分活动 738284
科研通“疑难数据库(出版商)”最低求助积分说明 722769