亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of medical record-based logistic regression and machine learning models to diagnose diabetic retinopathy

医学 逻辑回归 接收机工作特性 糖尿病性视网膜病变 队列 全国健康与营养检查调查 内科学 糖尿病 人口 内分泌学 环境卫生
作者
Heyan Li,Li Dong,Wen‐Da Zhou,Haotian Wu,Ruiheng Zhang,Yi-Tong Li,Chuyao Yu,Wenbin Wei
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Nature]
卷期号:261 (3): 681-689 被引量:16
标识
DOI:10.1007/s00417-022-05854-9
摘要

PurposesMany factors were reported to be associated with diabetic retinopathy (DR); however, their contributions remained unclear. We aimed to evaluate the prognostic and diagnostic accuracy of logistic regression and three machine learning models based on various medical records.MethodsThis was a cross-sectional study. We investigated the prevalence and associations of DR among 757 participants aged 40 years or older in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). We trained the models to predict if the participants had DR with 15 predictor variables. Area under the receiver operating characteristic (AUROC) and mean squared error (MSE) of each algorithm were compared in the external validation dataset using a replicate cohort from NHANES 2007–2008.ResultsAmong the 757 participants, 53 (7.00%) subjects had DR, the mean (standard deviation, SD) age was 57.7 (13.04), and 78.0% were male (n = 42). Logistic regression revealed that female gender (OR = 4.130, 95% CI: 1.820–9.380; P < 0.05), HbA1c (OR = 1.665, 95% CI: 1.197–2.317; P < 0.05), serum creatine level (OR = 2.952, 95% CI: 1.274–6.851; P < 0.05), and eGFR level (OR = 1.009, 95% CI: 1.000–1.014, P < 0.05) increased the risk of DR. The average performance obtained from internal validation was similar in all models (AUROC ≥ 0.945), and k-nearest neighbors (KNN) had the highest value with an AUROC of 0.984. In external validation, they remained robust or with modest reductions in discrimination with AUROC still ≥ 0.902, and KNN also performed the best with an AUROC of 0.982. Both logistic regression and machine learning models had good performance in the clinical diagnosis of DR.ConclusionsThis study highlights the utility of comparing traditional logistic regression to machine learning models. We found that logistic regression performed as well as optimized machine learning methods when classifying DR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
科目三应助眨眼采纳,获得10
1分钟前
1分钟前
伶俐的金连完成签到 ,获得积分10
1分钟前
眨眼发布了新的文献求助10
1分钟前
1分钟前
完美世界应助dfgrtbddffh采纳,获得10
1分钟前
liuyux发布了新的文献求助10
1分钟前
无花果应助眨眼采纳,获得10
1分钟前
倔大三应助liuyux采纳,获得10
2分钟前
2分钟前
眨眼发布了新的文献求助10
2分钟前
meow完成签到 ,获得积分10
2分钟前
嘻嘻哈哈完成签到 ,获得积分10
2分钟前
2分钟前
耶耶cc发布了新的文献求助30
2分钟前
充电宝应助眨眼采纳,获得10
2分钟前
yannnis完成签到 ,获得积分10
2分钟前
andrele应助科研通管家采纳,获得10
3分钟前
huenguyenvan完成签到,获得积分10
3分钟前
3分钟前
pyhsicsyyc完成签到,获得积分10
3分钟前
眨眼发布了新的文献求助10
3分钟前
cqbrain123完成签到,获得积分10
3分钟前
Freeasy完成签到 ,获得积分10
3分钟前
4分钟前
斤斤发布了新的文献求助10
4分钟前
耶耶cc完成签到 ,获得积分10
4分钟前
4分钟前
丘比特应助斤斤采纳,获得10
4分钟前
JJBOND发布了新的文献求助10
4分钟前
4分钟前
起风了1995发布了新的文献求助10
4分钟前
香蕉觅云应助pyhsicsyyc采纳,获得10
4分钟前
Orange应助努力学习采纳,获得10
4分钟前
努力学习完成签到,获得积分10
5分钟前
踏云完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Clinical Efficacy of the Hydrogel Patch Containing Loxoprofen Sodium (LX-A) on Osteoarthritis of the Knee-A Randomized, Open Label Clinical Study with Ketoprofen Patch-(Phase III Therapeutic Confirmatory Study) 410
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845280
求助须知:如何正确求助?哪些是违规求助? 6200992
关于积分的说明 15616333
捐赠科研通 4962111
什么是DOI,文献DOI怎么找? 2675297
邀请新用户注册赠送积分活动 1620043
关于科研通互助平台的介绍 1575327