Dijkstra算法
计算机科学
调度(生产过程)
动态优先级调度
数学优化
作业车间调度
运动规划
实时计算
分布式计算
最短路径问题
图形
地铁列车时刻表
机器人
人工智能
数学
理论计算机科学
操作系统
出处
期刊:IEEE/CAA Journal of Automatica Sinica
[Institute of Electrical and Electronics Engineers]
日期:2022-10-10
卷期号:9 (11): 2005-2019
被引量:33
标识
DOI:10.1109/jas.2022.105950
摘要
The uninterrupted operation of the quay crane (QC) ensures that the large container ship can depart port within lay-time, which effectively reduces the handling cost for the container terminal and ship owners. The QC waiting caused by automated guided vehicles (AGVs) delay in the uncertain environment can be alleviated by dynamic scheduling optimization. A dynamic scheduling process is introduced in this paper to solve the AGV scheduling and path planning problems, in which the scheduling scheme determines the starting and ending nodes of paths, and the choice of paths between nodes affects the scheduling of subse-quentAGVs. This work proposes a two-stage mixed integer optimization model to minimize the transportation cost of AGVs under the constraint of laytime. A dynamic optimization algorithm, including the improved rule-based heuristic algorithm and the integration of the Dijkstra algorithm and the Q-Learning algorithm, is designed to solve the optimal AGV scheduling and path schemes. A new conflict avoidance strategy based on graph theory is also proposed to reduce the probability of path conflicts between AGVs. Numerical experiments are conducted to demonstrate the effectiveness of the proposed model and algorithm over existing methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI