Abstract 899: Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data

结直肠癌 癌症 转录组 人工智能 计算生物学 计算机科学 数据类型 图像(数学) 模式识别(心理学) 生物 医学 癌症研究 地图学 内科学 地理 遗传学 基因表达 基因 程序设计语言
作者
Seungho Cook,Dongjoo Lee,Myunghyun Lim,Jae Eun Lee,Daeseung Lee,Hyung‐Jun Im,Jung‐Soo Pyo,Kwon Joong Na,Hongyoon Choi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 899-899
标识
DOI:10.1158/1538-7445.am2024-899
摘要

Abstract Purpose The tumor microenvironment (TME) is crucial in colorectal cancer as it influences disease progression, treatment response, and patient outcomes, providing valuable insights for personalized therapies and prognostic assessments. Here, we have developed a deep learning model by integrating hematoxylin and eosin (H&E) stained images of colorectal cancer and image-based spatial transcriptomics (Xenium) to infer spatial mapping of cell types in TME only using H&E images. Methods A total of 30 H&E images of colorectal cancer obtained by tissue microarray were registered with image-based spatial transcriptomics data (Xenium). Utilizing a Variational Autoencoder (VAE) based model and leveraging reference single-cell data enables the acquisition of cell types for individual cells in image-based spatial transcriptomics. A convolutional neural network (CNN) model was developed using H&E image as inputs to predict cell types in H&E-stained tissue image patches of colorectal cancer collected from various patients. The model also estimated the cell types from H&E-stained whole slide tissue image of colorectal cancer of The Cancer Genome Atlas (TCGA-COAD). Results The accuracy of the model's predictions for cell types using H&E image patches was notably high and exhibited a significant concordance with the results obtained through the validation. The Intersection over Union (IoU) metric for image segmentation indicated a value of 0.66 for epithelial cells and 0.44 for TNK cells. The output of deep learning model for epithelial cells and T/NK cells from TCGA-COAD tissue images showed a correlation with human-labeled regions of cancer epithelium and immune cells. Conclusions Leveraging image-based spatial transcriptomics, we developed a deep learning model capable of discerning various cell types within the tumor microenvironment solely from H&E images. This clinically translatable approach is valuable for investigating tumor microenvironment to develop biomarkers associated with various cancer therapeutics particularly immuno-oncology drugs. This approach can yield objective deep learning-based models without human labels for characterizing the tumor microenvironment in single-cell resolution, particularly regarding spatial immune distribution. Citation Format: Seungho Cook, Dongjoo Lee, Myunghyun Lim, Jae Eun Lee, Daeseung Lee, Hyung-Jun Im, Jung-Soo Pyo, Kwon Joong Na, Hongyoon Choi. Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 899.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
早起吃饱多运动完成签到,获得积分10
2秒前
谦让的樱发布了新的文献求助10
3秒前
3秒前
sdnihbhew完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
李健的小迷弟应助七七采纳,获得10
5秒前
Layace完成签到 ,获得积分10
8秒前
怕孤单的汉堡应助HotnessK采纳,获得50
8秒前
9秒前
123发布了新的文献求助10
9秒前
飞翔的荷兰人完成签到,获得积分10
10秒前
艺涵完成签到,获得积分10
11秒前
Akim应助qzj采纳,获得10
12秒前
13秒前
偏翩完成签到 ,获得积分10
13秒前
14秒前
15秒前
哈哈哈完成签到,获得积分10
15秒前
16秒前
17秒前
17秒前
沉醉发布了新的文献求助10
17秒前
19秒前
20秒前
哭泣以筠发布了新的文献求助10
20秒前
CodeCraft应助Ephemeral采纳,获得10
21秒前
眼睛大的问儿完成签到,获得积分10
22秒前
yyd发布了新的文献求助30
22秒前
23秒前
25秒前
科研小白完成签到,获得积分10
25秒前
科研通AI5应助blueweier采纳,获得10
25秒前
无花果应助无限的可乐采纳,获得20
27秒前
27秒前
27秒前
30秒前
30秒前
31秒前
科研通AI2S应助yyd采纳,获得10
31秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
GNSS Applications in Earth and Space Observations 300
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3715470
求助须知:如何正确求助?哪些是违规求助? 3262331
关于积分的说明 9923943
捐赠科研通 2976090
什么是DOI,文献DOI怎么找? 1632071
邀请新用户注册赠送积分活动 774315
科研通“疑难数据库(出版商)”最低求助积分说明 744856