Crystal plasticity simulations reveal cooperative plasticity mechanisms leading to enhanced strength and toughness in gradient nanostructured metals

材料科学 可塑性 应变硬化指数 硬化(计算) 微观结构 变形机理 韧性 复合材料 位错 变形(气象学) 晶体塑性 粒度 图层(电子)
作者
Claire Griesbach,Curt A. Bronkhorst,Ramathasan Thevamaran
出处
期刊:Acta Materialia [Elsevier]
卷期号:270: 119835-119835 被引量:3
标识
DOI:10.1016/j.actamat.2024.119835
摘要

Heterogeneous deformation is thought to provide the strengthening in gradient nanostructured metals, but the underlying plasticity mechanisms and optimal gradient structures for attaining improved mechanical performance remain elusive. Through crystal plasticity simulations of three-dimensional heterogeneous nanostructures, we reveal the heterogeneous-deformation-induced plasticity mechanisms which evoke increased flow strength and strain hardening. We have developed a synthetic microstructure generation algorithm which replicates both the microstructural features and external geometry of experimentally characterized samples—providing a direct comparison between the mechanical response recorded in simulations and experiments. Aligning well with experiments, the simulations show synergistically enhanced mechanical properties. High strain hardening rates directly correlate to large stress gradients that emerge due to heterogeneous deformation. Samples with smooth grain size gradients exhibit the most extreme stress gradients and correspondingly higher strain hardening rates. Large increases in dislocation density—especially within larger grains—and high intra- and inter-granular crystal rotation are plasticity mechanisms common to samples which exhibit high mechanical performance. Although the nanostructural gradients have pronounced influence over the mechanical performance, samples with the same grain size and dislocation density gradients exhibit varied mechanical properties. We show that the distribution of initial grain orientations and the microstructural constraints placed on larger grains also influence the active plasticity mechanisms providing improved mechanical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛马人生完成签到,获得积分10
1秒前
2秒前
2秒前
chenrujian发布了新的文献求助10
2秒前
wjl发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
柚子完成签到,获得积分10
4秒前
4秒前
5秒前
桐桐应助心灵美秋珊采纳,获得10
6秒前
6秒前
岁杪完成签到,获得积分10
6秒前
lailai完成签到 ,获得积分10
6秒前
好吃发布了新的文献求助10
7秒前
顾矜应助空古悠浪采纳,获得10
7秒前
chen发布了新的文献求助10
8秒前
王乐多发布了新的文献求助10
8秒前
8秒前
隐形曼青应助大爆炸采纳,获得10
8秒前
那些年发布了新的文献求助10
8秒前
Makkki发布了新的文献求助10
8秒前
Emma发布了新的文献求助10
8秒前
9秒前
9秒前
情怀应助布丁味小核桃采纳,获得10
10秒前
充电宝应助星期一采纳,获得10
11秒前
芬枫疯完成签到 ,获得积分10
11秒前
子车茗应助娇气的寒香采纳,获得30
11秒前
大大完成签到,获得积分10
11秒前
12秒前
情怀应助大河内采纳,获得10
12秒前
芋头发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
陶醉元冬完成签到,获得积分10
14秒前
首席或雪月完成签到,获得积分10
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515448
求助须知:如何正确求助?哪些是违规求助? 3097719
关于积分的说明 9236719
捐赠科研通 2792737
什么是DOI,文献DOI怎么找? 1532622
邀请新用户注册赠送积分活动 712201
科研通“疑难数据库(出版商)”最低求助积分说明 707160