数学
子空间拓扑
核(代数)
采样(信号处理)
空格(标点符号)
核希尔伯特再生空间
核主成分分析
再中心定理
统计
数学分析
核方法
纯数学
人工智能
希尔伯特空间
计算机科学
支持向量机
滤波器(信号处理)
计算机视觉
操作系统
作者
Shivam Bajpeyi,Dhiraj Patel,S. Sivananthan
标识
DOI:10.1142/s021953052450012x
摘要
In this paper, we aim to provide a general paradigm for dealing with the sampling and random sampling problem in a reproducing kernel subspace of Orlicz space [Formula: see text]. We consider the function space [Formula: see text] as the image of an idempotent integral operator on [Formula: see text], where the integral kernel satisfies certain off-diagonal decay and regularity conditions. The model example of such reproducing kernel subspace of [Formula: see text] includes the finitely generated shift-invariant space and signal space with a finite rate of innovation. We show that a signal in [Formula: see text] can be stably reconstructed from its samples at distinct points separated by a sufficiently small gap. Next, we deduce that the random sampling inequality holds with a high probability for the class of functions in [Formula: see text] concentrated on a cube [Formula: see text], when the samples collected at i.i.d. random points are drawn on [Formula: see text] of order [Formula: see text].
科研通智能强力驱动
Strongly Powered by AbleSci AI