MDFL: Multi-Domain Diffusion-Driven Feature Learning

特征(语言学) 领域(数学分析) 扩散 计算机科学 人工智能 数学 物理 哲学 数学分析 语言学 热力学
作者
Daixun Li,Weiying Xie,Jiaqing Zhang,Yunsong Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8653-8660 被引量:2
标识
DOI:10.1609/aaai.v38i8.28710
摘要

High-dimensional images, known for their rich semantic information, are widely applied in remote sensing and other fields. The spatial information in these images reflects the object's texture features, while the spectral information reveals the potential spectral representations across different bands. Currently, the understanding of high-dimensional images remains limited to a single-domain perspective with performance degradation. Motivated by the masking texture effect observed in the human visual system, we present a multi-domain diffusion-driven feature learning network (MDFL) , a scheme to redefine the effective information domain that the model really focuses on. This method employs diffusion-based posterior sampling to explicitly consider joint information interactions between the high-dimensional manifold structures in the spectral, spatial, and frequency domains, thereby eliminating the influence of masking texture effects in visual models. Additionally, we introduce a feature reuse mechanism to gather deep and raw features of high-dimensional data. We demonstrate that MDFL significantly improves the feature extraction performance of high-dimensional data, thereby providing a powerful aid for revealing the intrinsic patterns and structures of such data. The experimental results on three multi-modal remote sensing datasets show that MDFL reaches an average overall accuracy of 98.25%, outperforming various state-of-the-art baseline schemes. Code available at https://github.com/LDXDU/MDFL-AAAI-24.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观小之应助珊珊4532采纳,获得10
刚刚
1秒前
11223344发布了新的文献求助10
1秒前
1秒前
童书兰发布了新的文献求助10
2秒前
fx完成签到,获得积分20
2秒前
SYLH应助感动的沅采纳,获得10
2秒前
green发布了新的文献求助50
2秒前
菜菜发布了新的文献求助10
3秒前
安详向薇完成签到,获得积分10
3秒前
5秒前
FashionBoy应助姚玲采纳,获得20
5秒前
11223344完成签到,获得积分10
6秒前
昏睡的翠萱完成签到,获得积分10
6秒前
7秒前
8秒前
无私的芹应助缄默采纳,获得10
10秒前
10秒前
不攻自破发布了新的文献求助10
10秒前
12秒前
12秒前
知乐应助fx采纳,获得10
12秒前
12秒前
跳跃的曼寒完成签到,获得积分10
14秒前
15秒前
安静笑晴发布了新的文献求助10
15秒前
CodeCraft应助yukaiyuan采纳,获得10
15秒前
伍兹发布了新的文献求助10
15秒前
15秒前
CodeCraft应助不攻自破采纳,获得10
15秒前
15秒前
16秒前
16秒前
Peggy完成签到,获得积分10
17秒前
student完成签到,获得积分10
17秒前
我是老大应助林八八采纳,获得10
18秒前
18秒前
Sew东坡发布了新的文献求助10
19秒前
wei发布了新的文献求助10
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952814
求助须知:如何正确求助?哪些是违规求助? 3498265
关于积分的说明 11091101
捐赠科研通 3228832
什么是DOI,文献DOI怎么找? 1785147
邀请新用户注册赠送积分活动 869189
科研通“疑难数据库(出版商)”最低求助积分说明 801367