MDFL: Multi-Domain Diffusion-Driven Feature Learning

特征(语言学) 领域(数学分析) 扩散 计算机科学 人工智能 数学 物理 哲学 数学分析 语言学 热力学
作者
Daixun Li,Weiying Xie,Jiaqing Zhang,Yunsong Li
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (8): 8653-8660 被引量:2
标识
DOI:10.1609/aaai.v38i8.28710
摘要

High-dimensional images, known for their rich semantic information, are widely applied in remote sensing and other fields. The spatial information in these images reflects the object's texture features, while the spectral information reveals the potential spectral representations across different bands. Currently, the understanding of high-dimensional images remains limited to a single-domain perspective with performance degradation. Motivated by the masking texture effect observed in the human visual system, we present a multi-domain diffusion-driven feature learning network (MDFL) , a scheme to redefine the effective information domain that the model really focuses on. This method employs diffusion-based posterior sampling to explicitly consider joint information interactions between the high-dimensional manifold structures in the spectral, spatial, and frequency domains, thereby eliminating the influence of masking texture effects in visual models. Additionally, we introduce a feature reuse mechanism to gather deep and raw features of high-dimensional data. We demonstrate that MDFL significantly improves the feature extraction performance of high-dimensional data, thereby providing a powerful aid for revealing the intrinsic patterns and structures of such data. The experimental results on three multi-modal remote sensing datasets show that MDFL reaches an average overall accuracy of 98.25%, outperforming various state-of-the-art baseline schemes. Code available at https://github.com/LDXDU/MDFL-AAAI-24.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奔奔发布了新的文献求助10
刚刚
stt完成签到 ,获得积分10
刚刚
明理的依柔完成签到,获得积分10
1秒前
Isco完成签到,获得积分10
1秒前
1秒前
Lucky完成签到,获得积分10
2秒前
科研通AI5应助www采纳,获得10
2秒前
3秒前
谜记完成签到 ,获得积分10
3秒前
3秒前
3秒前
心儿完成签到,获得积分20
3秒前
3秒前
天天快乐应助临天下采纳,获得10
4秒前
小蘑菇应助一年八篇sci采纳,获得10
4秒前
春风得意完成签到,获得积分10
4秒前
6秒前
zzx发布了新的文献求助10
6秒前
维尼完成签到,获得积分10
6秒前
VVV完成签到 ,获得积分10
6秒前
6秒前
7秒前
名天发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
pretend发布了新的文献求助10
8秒前
明亮紫夏发布了新的文献求助10
8秒前
9秒前
JY'完成签到,获得积分0
9秒前
如意楷瑞发布了新的文献求助10
9秒前
10秒前
10秒前
小志呀完成签到,获得积分10
10秒前
小易同学完成签到,获得积分10
10秒前
在水一方应助马丹娜采纳,获得10
10秒前
可爱的函函应助zxcv23采纳,获得10
11秒前
lunyu完成签到,获得积分10
11秒前
yanzu应助zzx采纳,获得10
11秒前
打打应助zzx采纳,获得10
11秒前
Ava应助zzx采纳,获得10
11秒前
ding应助zzx采纳,获得10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661348
求助须知:如何正确求助?哪些是违规求助? 3222425
关于积分的说明 9745450
捐赠科研通 2932009
什么是DOI,文献DOI怎么找? 1605406
邀请新用户注册赠送积分活动 757872
科研通“疑难数据库(出版商)”最低求助积分说明 734569