Selective genes expression and metabolites transformation drive a robust nitrite accumulation during nitrate reduction under alternating feast-famine condition

亚硝酸盐 硝酸盐 转化(遗传学) 化学 基因 饥荒 生物化学 生物 有机化学 历史 考古
作者
Duanyuan Xu,Rui Du,Shouyou Gao,Shenbin Cao,Yongzhen Peng
出处
期刊:Water Research [Elsevier BV]
卷期号:255: 121520-121520 被引量:9
标识
DOI:10.1016/j.watres.2024.121520
摘要

Nitrite production via denitrification has been regarded as a key approach for survival of anaerobic ammonium oxidation (anammox) bacteria. Despite the important carbon substrate, little is known about the role of differential genes expression and extracellular metabolite regulation among diverse microbial communities. In this study, a novel alternating feast-famine strategy was proposed and demonstrated to efficiently accumulate nitrite in a low-nitrogen loading rate (NLR) (0.2∼0.8 kg N/m3/d) denitrification system. Highly selective expression of denitrifying genes was revealed as key regulators. Interestingly, in absence of carbon source (ACS) condition, the expression of narG and narI/V genes responsible for reduction of nitrate to nitrite jumped to 2.5 and 5.1 times higher than that in presence of carbon source (PCS) condition with carbon to nitrate ratio of 3.0. This fortunately facilitated a rapid nitrite accumulation once acetate was added, despite a significantly down-regulated narG and narI/narV and up-regulated nirS/nirK. This strategy selected Thauera as the most dominant denitrifier (50.2%) with the highest contribution to narG and narI/narV genes, responsible for the high nitrite accumulation. Additionally, extracellular xylose, pyruvate, and glucose jointly promoted carbon-central metabolic pathway of key denitrifiers in ACS stage, playing an important role in the process of self-growth and selective enrichment of functional bacteria. The relatively rapid establishment and robust performance obtained in this study shows an engineering-feasible and economically-favorable solution for the regulation of partial denitrification in practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Q42完成签到,获得积分10
刚刚
楚之杰者完成签到,获得积分10
1秒前
揽月yue完成签到,获得积分10
1秒前
整齐半青发布了新的文献求助30
3秒前
jcc完成签到,获得积分10
3秒前
学术大佬阿呆完成签到 ,获得积分10
3秒前
激情的纲完成签到,获得积分10
4秒前
wnx001111完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
我是老大应助向连虎采纳,获得10
4秒前
司藤完成签到 ,获得积分10
5秒前
愤怒的夜绿完成签到,获得积分10
6秒前
JamesPei应助流汗因为热采纳,获得10
6秒前
oucedv发布了新的文献求助10
6秒前
甜甜千兰完成签到,获得积分10
6秒前
CACT完成签到,获得积分10
6秒前
xczhu完成签到,获得积分10
6秒前
Jeremy完成签到 ,获得积分10
7秒前
约翰完成签到,获得积分10
10秒前
SunnyHayes完成签到,获得积分10
10秒前
奋斗发布了新的文献求助10
11秒前
你怎么这么可爱啊完成签到,获得积分10
12秒前
marcelo完成签到,获得积分10
12秒前
剁手党完成签到,获得积分10
13秒前
Buduan完成签到,获得积分10
14秒前
QDU应助宗佳茹采纳,获得20
14秒前
xujy完成签到,获得积分10
15秒前
孤独丹秋完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助20
16秒前
哈哈完成签到,获得积分10
16秒前
雷欧奥特曼完成签到,获得积分10
16秒前
谢幼枫完成签到,获得积分10
16秒前
记忆力超人完成签到,获得积分10
17秒前
常常完成签到,获得积分10
17秒前
星辰完成签到 ,获得积分10
17秒前
DT完成签到,获得积分10
17秒前
西扬完成签到 ,获得积分10
18秒前
一站到底完成签到 ,获得积分10
20秒前
文静的白羊完成签到,获得积分10
22秒前
考啥都上岸完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365