Selective genes expression and metabolites transformation drive a robust nitrite accumulation during nitrate reduction under alternating feast-famine condition

亚硝酸盐 硝酸盐 反硝化细菌 反硝化 厌氧氨氧化菌 化学 细菌 亚硝酸盐还原酶 环境化学 生物化学 生物 微生物学 食品科学 氮气 有机化学 遗传学
作者
Dong Hai Xu,Rui Du,Shouyou Gao,Shenbin Cao,Shuying Wang
出处
期刊:Water Research [Elsevier]
卷期号:255: 121520-121520
标识
DOI:10.1016/j.watres.2024.121520
摘要

Nitrite production via denitrification has been regarded as a key approach for survival of anaerobic ammonium oxidation (anammox) bacteria. Despite the important carbon substrate, little is known about the role of differential genes expression and extracellular metabolite regulation among diverse microbial communities. In this study, a novel alternating feast-famine strategy was proposed and demonstrated to efficiently accumulate nitrite in a low-nitrogen loading rate (NLR) (0.2∼0.8 kg N/m3/d) denitrification system. Highly selective expression of denitrifying genes was revealed as key regulators. Interestingly, in absence of carbon source (ACS) condition, the expression of narG and narI/V genes responsible for reduction of nitrate to nitrite jumped to 2.5 and 5.1 times higher than that in presence of carbon source (PCS) condition with carbon to nitrate ratio of 3.0. This fortunately facilitated a rapid nitrite accumulation once acetate was added, despite a significantly down-regulated narG and narI/narV and up-regulated nirS/nirK. This strategy selected Thauera as the most dominant denitrifier (50.2%) with the highest contribution to narG and narI/narV genes, responsible for the high nitrite accumulation. Additionally, extracellular xylose, pyruvate, and glucose jointly promoted carbon-central metabolic pathway of key denitrifiers in ACS stage, playing an important role in the process of self-growth and selective enrichment of functional bacteria. The relatively rapid establishment and robust performance obtained in this study shows an engineering-feasible and economically-favorable solution for the regulation of partial denitrification in practical application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
先锋老刘001完成签到,获得积分10
1秒前
涂鸦少年完成签到 ,获得积分10
4秒前
Deila完成签到 ,获得积分0
6秒前
星际舟完成签到,获得积分10
8秒前
冷傲迎梦完成签到,获得积分10
8秒前
黑风小妖完成签到,获得积分10
8秒前
汕头凯奇完成签到,获得积分10
9秒前
9秒前
BYN完成签到 ,获得积分10
11秒前
打工人一枚完成签到,获得积分10
12秒前
xiaoxiaoliang完成签到,获得积分10
12秒前
unowhoiam完成签到 ,获得积分10
13秒前
哼哼完成签到 ,获得积分10
14秒前
15秒前
ryan1300完成签到 ,获得积分10
15秒前
啊啊啊啊完成签到,获得积分10
17秒前
高源伯完成签到 ,获得积分10
17秒前
weddcf完成签到,获得积分10
18秒前
Hey发布了新的文献求助10
18秒前
欣慰小蕊完成签到,获得积分10
19秒前
Xiaoyan完成签到,获得积分10
19秒前
tanmeng77完成签到,获得积分10
19秒前
114555完成签到,获得积分10
19秒前
Archy完成签到,获得积分10
19秒前
Leohp完成签到,获得积分10
20秒前
meehan完成签到,获得积分10
21秒前
优秀小鸽子完成签到 ,获得积分10
21秒前
王灿灿应助科研通管家采纳,获得10
22秒前
22秒前
24秒前
Viikey完成签到,获得积分0
24秒前
24秒前
刘金玲完成签到,获得积分10
25秒前
开心完成签到,获得积分10
27秒前
Diego完成签到,获得积分10
27秒前
微微发布了新的文献求助10
27秒前
啦啦啦完成签到 ,获得积分10
28秒前
Haonan完成签到,获得积分10
28秒前
yueLu完成签到 ,获得积分10
28秒前
superhanlei完成签到 ,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146946
求助须知:如何正确求助?哪些是违规求助? 2798219
关于积分的说明 7827061
捐赠科研通 2454768
什么是DOI,文献DOI怎么找? 1306462
科研通“疑难数据库(出版商)”最低求助积分说明 627788
版权声明 601565