ECHO-GL: Earnings Calls-Driven Heterogeneous Graph Learning for Stock Movement Prediction

收益 Echo(通信协议) 图形 计算机科学 人工智能 业务 财务 理论计算机科学 计算机安全
作者
Mengpu Liu,Mengying Zhu,Xiuyuan Wang,Guofang Ma,Jianwei Yin,Xiaolin Zheng
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (12): 13972-13980 被引量:4
标识
DOI:10.1609/aaai.v38i12.29305
摘要

Stock movement prediction serves an important role in quantitative trading. Despite advances in existing models that enhance stock movement prediction by incorporating stock relations, these prediction models face two limitations, i.e., constructing either insufficient or static stock relations, which fail to effectively capture the complex dynamic stock relations because such complex dynamic stock relations are influenced by various factors in the ever-changing financial market. To tackle the above limitations, we propose a novel stock movement prediction model ECHO-GL based on stock relations derived from earnings calls. ECHO-GL not only constructs comprehensive stock relations by exploiting the rich semantic information in the earnings calls but also captures the movement signals between related stocks based on multimodal and heterogeneous graph learning. Moreover, ECHO-GL customizes learnable stock stochastic processes based on the post earnings announcement drift (PEAD) phenomenon to generate the temporal stock price trajectory, which can be easily plugged into any investment strategy with different time horizons to meet investment demands. Extensive experiments on two financial datasets demonstrate the effectiveness of ECHO-GL on stock price movement prediction tasks together with high prediction accuracy and trading profitability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
犹豫千儿发布了新的文献求助10
1秒前
威武的妍完成签到,获得积分10
2秒前
彭彭完成签到,获得积分10
2秒前
6秒前
芋泥橙子完成签到,获得积分10
6秒前
花椰菜头完成签到,获得积分10
6秒前
科研通AI5应助付XR采纳,获得10
8秒前
酷炫迎波完成签到,获得积分10
8秒前
迪迦奥特曼完成签到,获得积分10
8秒前
CipherSage应助羽羊周周采纳,获得10
9秒前
9秒前
bkagyin应助芋泥橙子采纳,获得10
9秒前
出现在uwuh完成签到,获得积分10
9秒前
毛儿豆儿完成签到,获得积分10
10秒前
小乌龟完成签到,获得积分10
11秒前
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
顾矜应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
Owen应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
小乌龟发布了新的文献求助10
14秒前
bkagyin应助科研通管家采纳,获得10
15秒前
xxxxx应助科研通管家采纳,获得20
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
李健应助科研通管家采纳,获得10
15秒前
SYLH应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411